LEADER 01743nam0 2200373 i 450 001 SUN0103902 005 20151130111404.982 010 $a8-3-319-08689-7$d0.00 017 70$2N$a978-3-319-08690-3 100 $a20151130d2014 |0engc50 ba 101 $aeng 102 $aCH 105 $a|||| ||||| 200 1 $a*Control of nonholonomic systems$efrom sub-riemannian geometry to motion planning$fFrédéric Jean 205 $aCham : Springer, 2014 210 $aX$d104 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0102596$12001 $a*SpringerBriefs in mathematics$1210 $aBerlin$cSpringer$d2011-. 606 $a93B05$xControllability [MSC 2020]$2MF$3SUNC022780 606 $a70F25$xNonholonomic systems related to the dynamics of a system of particles [MSC 2020]$2MF$3SUNC024188 606 $a93B27$xGeometric methods [MSC 2020]$2MF$3SUNC024190 606 $a53C17$xSub-Riemannian geometry [MSC 2020]$2MF$3SUNC026654 606 $a93-XX$xSystems theory; control [MSC 2020]$2MF$3SUNC027040 606 $a93C10$xNonlinear systems in control theory [MSC 2020]$2MF$3SUNC029009 606 $a49K21$xOptimality conditions for problems involving relations other than differential equations [MSC 2020]$2MF$3SUNC031385 620 $aCH$dCham$3SUNL001889 700 1$aJean$b, Frédéric$3SUNV080993$0721265 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201026$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-3-319-08690-3 912 $aSUN0103902 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4532 $e15EB 4532 20191106 996 $aControl of nonholonomic systems$91409850 997 $aUNICAMPANIA