LEADER 01042nam2-22003131i-450- 001 990000229780403321 035 $a000022978 035 $aFED01000022978 035 $a(Aleph)000022978FED01 035 $a000022978 100 $a20011111d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a2. : Thermométrie, dilations, calorimétrie,théorie mécanique de la chaleur,propagation de la chaleur. 267, 408 p. :ill. 205 $a3. éd. 210 $aParis$cGauthier-Villars$d1878- 215 $av.$d23 cm 461 0$1001000010602$12001$aCours de physique de l'cole polytechnique 610 0 $aFisica 676 $a530 700 1$aJamin,$bJules Celestin$f<1818-1886> 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000229780403321 952 $a13 AR 19 B 37$b4480$fFINBC 959 $aFINBC 996 $a2. : Thermométrie, dilations, calorimétrie,théorie mécanique de la chaleur,propagation de la chaleur. 267, 408 p. :ill$9123201 997 $aUNINA DB $aING01 LEADER 01173nam0 2200277 i 450 001 SUN0103642 005 20151119102259.177 010 $a978-08-218-9132-2$d0.00 100 $a20151119d2013 |0engc50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $aThe *K-book$ean introduction to algebraic k-theory$fCharles A. Weibel 210 $aProvidence$cAmerican mathematical society$d2013 215 $aXII, 618 p.$d26 cm. 410 1$1001SUN0044634$12001 $aGraduate studies in mathematics$v145$1210 $aProvidence$cAmerican mathematical society$d1993-. 606 $a19-XX$x$K$-theory [MSC 2020]$2MF$3SUNC019735 620 $aUS$dProvidence$3SUNL000273 700 1$aWeibel$b, Charles A.$3SUNV039615$060535 712 $aAmerican mathematical society$3SUNV001080$4650 801 $aIT$bSOL$c20200720$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Weibel - The K-Book.pdf 912 $aSUN0103642 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 19-XX 4845 $e08DMF94 I 20151119 $sBuono 996 $aK-book$9833404 997 $aUNICAMPANIA LEADER 01787oam 2200433 450 001 9910704620303321 005 20140430140810.0 035 $a(CKB)5470000002443515 035 $a(OCoLC)878691072 035 $a(EXLCZ)995470000002443515 100 $a20140430d2013 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComplexity of nearshore strontium-to-calcium ratio variability in a core sample of the massive coral Siderastrea siderea obtained in Coral Bay, St. John, U.S. Virgin Islands /$fby Christopher D. Reich [and four others] 210 1$aReston, Virginia :$cU.S. Department of the Interior, U.S. Geological Survey,$d2013. 215 $a1 online resource (iv, 12 pages) $ccolor illustrations 225 1 $aOpen-file report ;$v2013-1092 300 $aTitle from title screen (viewed on Apr. 30, 2014). 320 $aIncludes bibliographical references (pages 11-12). 606 $aCoral reefs and islands$zUnited States Virgin Islands$zSaint John 606 $aHabitat (Ecology)$zUnited States Virgin Islands$zSaint John 606 $aStrontium$xMeasurement 606 $aCalcium$xMeasurement 615 0$aCoral reefs and islands 615 0$aHabitat (Ecology) 615 0$aStrontium$xMeasurement. 615 0$aCalcium$xMeasurement. 700 $aReich$b Christopher D.$01394366 712 02$aGeological Survey (U.S.), 801 0$bGPO 801 1$bGPO 801 2$bGPO 906 $aBOOK 912 $a9910704620303321 996 $aComplexity of nearshore strontium-to-calcium ratio variability in a core sample of the massive coral Siderastrea siderea obtained in Coral Bay, St. John, U.S. Virgin Islands$93466173 997 $aUNINA LEADER 11556nam 2200505 450 001 9910830597203321 005 20230630000934.0 010 $a1-5231-4316-9 010 $a1-119-65053-4 010 $a1-119-65054-2 010 $a1-119-65050-X 035 $a(CKB)4100000011795873 035 $a(MiAaPQ)EBC6510123 035 $a(Au-PeEL)EBL6510123 035 $a(OCoLC)1241449241 035 $a(EXLCZ)994100000011795873 100 $a20211006d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAgitator design for gas-liquid fermenters and bioreactors /$fGregory T. Benz 210 1$aHoboken, New Jersey :$cWiley :$cAIChe,$d[2021] 210 4$d©2021 215 $a1 online resource (451 pages) 311 $a1-119-65049-6 327 $aCover -- Title Page -- Copyright Page -- Contents -- Preface -- Foreword -- Foreword for Greg Benz -- Chapter 1 Purpose of Agitator Design -- References -- Chapter 2 Major Steps in Successful Agitator Design -- Define Process Results -- Define Process Conditions -- Choose Tank Geometry -- Calculate Equivalent Power/Airflow Combinations for Equal Mass Transfer Rate -- Choose Minimum Combined Power -- Choose Shaft Speed -- Size Impeller System to Draw Required Gassed Power -- Decision Point: D/T and Gassing Factors OK? -- Mechanical Design -- Decision Point: Is the Mechanical Design Feasible? -- Repeat to Find Lowest Cost -- Repeat for Different Aspect Ratios -- Repeat for Different Process Conditions -- Finish -- Summary of Chapter -- List of Symbols -- References -- Chapter 3 Agitator Fundamentals -- Agitated Tank Terminology -- Prime Mover -- Reducer -- Shaft Seal -- Wetted Parts -- Tank Dimensions -- How Agitation Parameters Are Calculated -- Reynolds Number -- Power Number -- Pumping Number -- Dimensionless Blend Time -- Aeration Number -- Gassing Factor -- Nusselt Number -- Froude Number -- Prandtl Number -- Geometric Ratios -- Baffle Number -- Dimensionless Hydraulic Force -- Thrust Number -- Typical Dimensionless Number Curves -- A Primer on Rheology -- Newtonian Model -- Pseudoplastic or Shear Thinning, Model (Aka Power Law Fluid) -- Bingham Plastic -- Herschel-Bulkley -- Impeller Apparent Viscosity -- A Bit of Impeller Physics -- Summary of Chapter -- List of Symbols -- Greek letters -- References -- Chapter 4 Agitator Behavior under Gassed Conditions -- Flooding -- kla Method -- Power Draw Method -- Visual Flow Pattern Method -- Effect on Power Draw -- Holdup -- Example of Holdup Calculation -- Holdup "War Story" -- Variable Gas Flow Operation -- Mechanical Effects -- Summary of Chapter -- List of Symbols -- References. 327 $aChapter 5 Impeller Types Used in Fermenters -- Impeller Flow Patterns -- Axial Flow -- Radial Flow -- Mixed Flow -- Chaos Flow -- Examples of Axial Flow Impellers -- Low Solidity -- High Solidity -- Up-pumping vs. Down Pumping -- Examples of Radial Flow Impellers -- Straight Blade Impeller -- Disc, aka Rushton, Turbines -- Smith Turbines -- CD-6 Turbine by Chemineer -- aka Smith Turbine by Many Manufacturers -- Deeply Concave Turbines -- Deep Asymmetric Concave Turbine with Overhang (BT-6) -- Examples of Mixed Flow Impellers -- Examples of Chaos Impellers -- Shear Effects -- Specialty Impellers -- Summary of Chapter -- List of Symbols -- References -- Chapter 6 Impeller Systems -- Why Do We Need a System? -- Reaction Engineering -- Fermenter History -- Steps to Impeller System Design -- Choose Number of Impellers -- Choose Placement of Impellers -- Choose Type(s) of Impellers -- Choose Power Split or Distribution Among Impellers -- Choose D/T and/or Shaft Speed -- D/T Effects with Variable Gas Flowrates -- Conclusions on D/T Ratio -- Design to Minimize Shear Damage -- Sparger Design -- Ring Sparger -- Pre-dispersion -- Fine Bubble Diffuser -- Summary of Chapter -- List of Symbols -- References -- Chapter 7 Piloting for Mass Transfer -- Why Pilot for Mass Transfer -- Methods for Determining kla -- Sulfite Method -- Dynamic Method -- aka Dynamic Gassing/Degassing Method -- Steady-State Method -- aka Mass Balance Method -- Combined Dynamic and Steady-State Method -- Equipment Needed for Scalable Data -- Data Gathering Needs -- Experimental Protocol -- Summary of Chapter -- List of Symbols -- References -- Chapter 8 Power and Gas Flow Design and Optimization -- What This Chapter Is about -- Where We Are in Terms of Design -- Design with no Data -- Design with Limited Pilot Data -- Design with Full Data -- Choose Minimum Combined Power. 327 $aState of Design Completion -- Additional Considerations -- Summary of Chapter -- List of Symbols -- References -- Chapter 9 Optimizing Operation for Minimum Energy Consumption per Batch -- Purpose of This Chapter -- Prerequisite -- Conceptual Overview -- Detailed Procedure -- Minimizing Total Energy Usage -- Practical Design -- Additional Considerations -- Summary of Chapter -- List of Symbols -- References -- Chapter 10 Heat Transfer Surfaces and Calculations -- Purpose of This Chapter -- Design Philosophy -- Overview of the Problem -- Heat Sources -- Cooling Sources -- Heat Exchange Surface Overview -- Principle of Heat Transfer Calculation -- Calculations By Type of Surface -- Vessel Jacket, Agitated Side -- Simple Unbaffled Jacket, Jacket Side -- Dimple Jacket, Jacket Side -- Half-Pipe Coil, Jacket Side -- Helical Coil, Inside -- Helical Coil, Process Side -- Vertical Tube Bundle, Inside -- Vertical Tube Bundle, Process Side -- Plate Coil, Inside -- Plate Coil, Process Side -- Example Problem: Vertical Tube Bundle -- Problem Statement -- Problem Solution -- Additional Consideration: Effect on Power Draw -- Additional Consideration: Forces on Heat Exchange Surfaces Used as Baffles -- Additional Consideration: Wall Viscosity -- Additional Consideration: Effect of Gas -- External Heat Exchange Loops -- Summary of Chapter -- List of Symbols -- References -- Further Readings -- Chapter 11 Gasses Other Than Air and Liquids Other Than Water -- General Principle -- Comments on Some Specific Gasses -- Ammonia -- Carbon Dioxide -- Carbon Monoxide -- Hydrogen -- Methane -- Oxygen -- Economic Factors -- Disposal Factors -- Effects of Different Gasses on kla -- Effects of Different Gasses on Driving Force -- Operating Condition Effects -- Constraints on Outlet Concentration -- Safety -- Liquids Other Than Water -- Summary of Chapter -- List of Symbols. 327 $aReferences -- Chapter 12 Viscous Fermentation -- General Background -- Sources of Viscosity -- Viscosity Models for Broths -- Effect of Viscosity on Power Draw -- Example Problem -- Example Problem Answer -- Effect of Viscosity on kla -- Effect of Viscosity on Holdup -- Effect of Viscosity on Blend Time -- Effect of Viscosity on Flooding -- Caverns -- Estimating Cavern Size -- Xanthan and Gellan Gums -- Viscosity Models for Gums -- Installation Survey -- Effect of D/T and No. and Type of Impellers on Results in Xanthan Gum -- Production Curve -- Heat Transfer -- All-Axial Impeller Design -- Invisible Draft Tube vs. Axial/Radial Combination -- Mycelial Broths -- Typical Viscosity Model -- Morphology Effects -- Recommendations -- Summary of Chapter -- List of Symbols -- References -- Chapter 13 Three Phase Fermentation -- General Problem -- Effect on Mass Transfer -- Effect on Foam -- Emulsion vs. Suspension -- Complexity: How to Optimize Operation -- Summary of Chapter -- List of Symbols -- References -- Chapter 14 Use of CFD in Fermenter Design -- Purpose of This Chapter -- Basic Theory -- Methods of Presenting Data -- Velocity Distribution -- Cavern Formation -- Blending Progress -- Flow Around Coils -- Bubble Size, kla, Holdup -- DO Distribution -- Summary of Chapter -- List of Symbols -- References -- Chapter 15 Agitator Seal Design Considerations -- Introduction -- Terminology -- Main Functions of Fermenter Shaft Seals -- Common Types of Shaft Seals -- Material Considerations -- Methods of Lubricating Seals -- Seal Environmental Control and Seal Support System -- Seal Life Expectations -- Special Process Considerations -- Summary of Chapter -- Reference -- Chapter 16 Fermenter Agitator Mounting Methods -- Introduction -- Top Entering Methods -- Direct Nozzle Mount -- Beam Gear Drive Mount with Auxiliary Packing or Lip Seal. 327 $aBeams Tied into Vessel Sidewall -- Beam Gear Drive Mount with Auxiliary Mechanical Seal -- Beams Tied into Vessel Sidewall -- Beam Gear Drive Mount with Auxiliary Mechanical Seal -- Beams Tied into Building Structure -- Complete Drive and Seal Mount to Beams Tied into Vessel Sidewall, with Bellows Connector -- Complete Drive and Seal Mount to Beams Tied into Building Structure, with Bellows Connector -- Bottom Entering Methods -- Direct Nozzle Mount -- Floor Gear Drive Mount with Auxiliary Packing or Lip Seal -- Floor Gear Drive Mount with Auxiliary Mechanical Seal -- Floor Integrated Drive and Seal Mount with Bellows Connector -- Summary of Chapter -- References -- Chapter 17 Mechanical Design of Fermenter Agitators -- Introduction -- Impeller Design Philosophy -- Discussion on Hydraulic Force -- Shaft Design Philosophy -- Shaft Design Based on Stress -- Simple Example Problem -- Sample Problem with Steady Bearing -- Shaft Design Based On Critical Speed -- Cantilevered Designs -- Example Problem -- Units with Steady Bearings -- Solid Shaft vs. Hollow Shaft -- Role of FEA in Overall Shaft Design-Simplified Discussion -- Agitator Gear Drive Selection Concepts -- Early History -- Loads Imposed -- Handle or Isolate Loads? -- Handle Loads Option 1: Oversized Commercial Gear Drive -- Handle Loads Option 2: Purpose-Built Agitator Drive -- Isolate Loads Option 1: Hollow Quill Integrated Drive with Flexibly Coupled Extension Shaft -- Isolate Loads Option 2: Outboard Support Bearing Module -- Bearing Life Considerations -- Noise Considerations -- Torsional Natural Frequency -- Important or Useful Mechanical Design Features -- Summary of Chapter -- List of Symbols -- Greek Letters -- References -- Chapter 18 Sanitary Design -- Introduction -- Definitions -- Construction Principles -- Wetted Parts Construction Methods -- Welded Construction -- In-Tank Couplings. 327 $aMounting Flange Area. 330 $a"As in all kinds of process equipment, agitators must be correctly sized to deliver the process function, while maximizing return on investment and minimizing total energy cost. In a bioreactor, agitators are one of the prime drivers for promoting the development of gas/liquid interfacial area, which has a direct impact on mass transfer and hence production rate. Power consumption is a significant cost, which can be minimized by proper design of the agitation and air delivery systems. Finally, downtime is very expensive, so mechanically reliable agitators are essential. This book is an invaluable guide to the initiation, installation, and maintenance of agitators in fermenters and bioreactors"--$cProvided by publisher. 606 $aBioreactors$xEquipment and supplies 615 0$aBioreactors$xEquipment and supplies. 676 $a660.28449 700 $aBenz$b Gregory T.$01218009 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830597203321 996 $aAgitator design for gas-liquid fermenters and bioreactors$94028191 997 $aUNINA