LEADER 01794nam0 2200361 i 450 001 SUN0102908 005 20151120101600.498 010 $a8-1-4939-0681-9$d0.00 010 $a8-1-4939-0682-6 100 $a20151014d2014 |0engc50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $a*k-Schur functions and affine Schubert calculus$fThomas Lam ... [et al.]$gThe Fields Institute for Research in the Mathematical Sciences 205 $aNew York : Springer, 2014 210 $aVIII$d219 p.$cill. ; 24 cm 215 $aPubblicazione in formato elettronico 410 1$1001SUN0053229$12001 $a*Fields Institute monographs$fThe Fields institute for research in mathematical sciences$v33 606 $a05E05$xSymmetric functions and generalizations [MSC 2020]$2MF$3SUNC022086 606 $a14N35$xGromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) [MSC 2020]$2MF$3SUNC023980 606 $a14Rxx$xAffine geometry [MSC 2020]$2MF$3SUNC023994 606 $a05E10$xCombinatorial aspects of representation theory [MSC 2020]$2MF$3SUNC025072 606 $a14N15$xClassical problems, Schubert calculus [MSC 2020]$2MF$3SUNC028921 620 $aUS$dNew York$3SUNL000011 702 1$aLam$b, Thomas$3SUNV080333 712 02$aFields Institute for Research in Mathematical Sciences$3SUNV041098 712 $aSpringer$3SUNV000178$4650 801 $aIT$bSOL$c20201012$gRICA 856 4 $uhttp://dx.doi.org/10.1007/978-1-4939-0682-6 912 $aSUN0102908 950 $aBIBLIOTECA CENTRO DI SERVIZIO SBA$d15CONS SBA EBOOK 4641 $e15EB 4641 20191106 996 $aK-Schur functions and affine Schubert calculus$91410686 997 $aUNICAMPANIA