LEADER 01179nam0 22002773i 450 001 SUN0091024 005 20120925110828.948 010 $a01-228-5785-2 100 $a20120921d2003 |0engc50 ba 101 $aeng 102 $aNL 105 $a|||| ||||| 200 1 $aManaging bank risk$ean introduction to Broad-Base Credit engineering$fMorton Glantz$gwith contributions by Moodys-KMV and Jonathan Mun 210 $aAmsterdam [etc.]$cAcademic Press$d2003 215 $aXX, 667 p.$d24 cm$e1 CD ROM. 606 $aBanche$xGestione finanziaria$2FI$3SUNC026084 620 $dAmsterdam$3SUNL001716 700 1$aGlantz$b, Morton$3SUNV073792$0151559 712 $aAcademic$3SUNV000123$4650 801 $aIT$bSOL$c20181109$gRICA 856 4 $uhttp://books.google.it/books?id=GHb1zw-hDHsC&printsec=frontcover&hl=it 912 $aSUN0091024 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03 PREST IIAk27 $e03 30381 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$bIT-CE0106$h30381$kPREST IIAk27$op$qa 996 $aManaging bank risk$9472106 997 $aUNICAMPANIA LEADER 05506nam 2200685 450 001 9910141235803321 005 20170809153947.0 010 $a1-118-03272-1 010 $a1-118-03097-4 035 $a(CKB)2670000000128101 035 $a(EBL)694708 035 $a(OCoLC)773828472 035 $a(SSID)ssj0000597325 035 $a(PQKBManifestationID)11369713 035 $a(PQKBTitleCode)TC0000597325 035 $a(PQKBWorkID)10577693 035 $a(PQKB)10487775 035 $a(MiAaPQ)EBC694708 035 $a(PPN)169656292 035 $a(EXLCZ)992670000000128101 100 $a20160816h20002000 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aApplied functional analysis /$fJean-Pierre Aubin ; exercises by Bernard Cornet and Jean-Michel Lasry ; translated by Carole Labrousse 205 $a2nd ed. 210 1$aNew York, New York :$cJohn Wiley & Sons, Inc.,$d2000. 210 4$dİ2000 215 $a1 online resource (520 p.) 225 0 $aPure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts 300 $a"A Wiley-Interscience Publication." 311 $a0-471-17976-0 320 $aIncludes bibliographical references and index. 327 $aAPPLIED FUNCTIONAL ANALYSIS; CONTENTS; Preface; Introduction: A Guide to the Reader; 1. The Projection Theorem; 1.1. Definition of a Hilbert Space; 1.2. Review of Continuous Linear and Bilinear Operators; 1.3. Extension of Continuous Linear and Bilinear Operators by Density; 1.4. The Best Approximation Theorem; 1.5. Orthogonal Projectors; 1.6. Closed Subspaces, Quotient Spaces, and Finite Products of Hilbert Spaces; *1.7. Orthogonal Bases for a Separable Hilbert Space; 2. Theorems on Extension and Separation; 2.1. Extension of Continuous Linear and Bilinear Operators; 2.2. A Density Criterion 327 $a2.3. Separation Theorems2.4. A Separation Theorem in Finite Dimensional Spaces; 2.5. Support Functions; *2.6. The Duality Theorem in Convex Optimization; *2.7. Von Neumann's Minimax Theorem; *2.8. Characterization of Pareto Optima; 3. Dual Spaces and Transposed Operators; 3.1. The Dual of a Hilbert Space; 3.2. Realization of the Dual of a Hilbert Space; 3.3. Transposition of Operators; 3.4. Transposition of Injective Operators; 3.5. Duals of Finite Products, Quotient Spaces, and Closed or Dense Subspaces; 3.6. The Theorem of Lax-Milgram; *3.7. Variational Inequalities 327 $a*3.8. Noncooperative Equilibria in n-Person Quadratic Games4. The Banach Theorem and the Banach-Steinhaus Theorem; 4.1. Properties of Bounded Sets of Operators 7; 4.2. The Mean Ergodic Theorem; 4.3. The Banach Theorem; 4.4. The Closed Range Theorem; 4.5. Characterization of Left Invertible Operators; 4.6. Characterization of Right Invertible Operators; *4.7. Quadratic Programming with Linear Constraints; 5. Construction of Hilbert Spaces; 5.1. The Initial Scalar Product; 5.2. The Final Scalar Product; 5.3. Normal Subspaces of a Pivot Space 327 $a5.4. Minimal and Maximal Domains of a Closed Family of Operators*5.5. Unbounded Operators and Their Adjoints; *5.6. Completion of a Pre-Hilbert Space Contained in a Hilbert Space; *5.7. Hausdorff Completion; *5.8. The Hilbert Sum of Hilbert Spaces; *5.9. Reproducing Kernels of a Hilbert Space of Functions 1; 6. L2 Spaces and Convolution Operators; 6.1. The Space L2(?) of Square Integrable Functions; 6.2. The Spaces L2(?, a) with Weights; 6.3. The Space Hs; 6.4. The Convolution Product for Functions of L0( Rn) and of L1(Rn); 6.5. Convolution Operators; 6.6. Approximation by Convolution 327 $a*6.7. Example. Convolution Power for Characteristic Functions*6.8. Example. Convolution Product for Polynomials: Appell Polynomials; 7. Sobolev Spaces of Functions of One Variable; 7.1. The Space H0m(?) and Its Dual H-m(?); 7.2. Definition of Distributions; 7.3. Differentiation of Distributions; 7.4. Relations Between H0m(?) and H0m(R); 7.5. The Sobolev Space Hm(?); 7.6. Relations Between Hm(?) and Hm(R); *7.7. Characterization of the Dual of Hm(?); 7.8. Trace Theorems; 7.9. Convolution of Distributions; 8. Some Approximation Procedures in Spaces of Functions 327 $a8.1. Approximation by Orthogonal Polynomials 330 $aA novel, practical introduction to functional analysisIn the twenty years since the first edition of Applied Functional Analysis was published, there has been an explosion in the number of books on functional analysis. Yet none of these offers the unique perspective of this new edition. Jean-Pierre Aubin updates his popular reference on functional analysis with new insights and recent discoveries-adding three new chapters on set-valued analysis and convex analysis, viability kernels and capture basins, and first-order partial differential equations. He presents, for the first time at a 410 0$aPure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts 606 $aFunctional analysis 606 $aHilbert space 615 0$aFunctional analysis. 615 0$aHilbert space. 676 $a515.7 676 $a515/.7 700 $aAubin$b Jean Pierre$054013 702 $aCornet$b B. 702 $aLasry$b J. M. 702 $aLabrousse$b Carole 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910141235803321 996 $aApplied functional analysis$932464 997 $aUNINA