LEADER 01272nam--2200421---450- 001 990001261470203316 005 20031114153335.0 010 $a3-7908-0964-0 035 $a000126147 035 $aUSA01000126147 035 $a(ALEPH)000126147USA01 035 $a000126147 100 $a20031114d1997----km-y0itay0103----ba 101 0 $aeng 102 $aUS 105 $a||||||||001yy 200 1 $aFuzzy rule-based expert dystems and genetic learning$fAndreas Geyer-Schulz 205 $a2. ed$hrev. 210 $aHeidelberg$cPhysica$d1997 215 $aXX, 432 p.$d25 cm 225 2 $aStudies in fuzziness and soft computing$v3 410 0$12001$aStudies in fuzziness and soft computing$v3 454 1$12001 461 1$1001-------$12001 606 0 $aTeoria degli insiemi 606 0 $aSistemi esperti 606 0 $aApprendimento meccanico$xInformatica 676 $a511.322 700 1$aGEYER-SCHULZ,$bAndreas$0556935 801 0$aIT$bsalbc$gISBD 912 $a990001261470203316 951 $a511.322 GEY$b8878 Ing.$c511 959 $aBK 969 $aTEC 979 $aSIAV1$b10$c20031114$lUSA01$h1533 979 $aPATRY$b90$c20040406$lUSA01$h1730 996 $aFuzzy rule-based expert dystems and genetic learning$9986284 997 $aUNISA LEADER 01285nam0 2200289 i 450 001 SUN0056707 005 20151120101600.498 010 $a05-210-1253-8 100 $a20061130d2003 |0engc50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aˆA ‰primer of analytic number theory$efrom Pythagoras to Riemann$fJeffrey Stopple 210 $aCambridge$cCambridge University press$d2003 215 $aXIII, 383 p.$cill.$d23 cm. 606 $a11-XX$xNumber theory [MSC 2020]$2MF$3SUNC019688 606 $a11M06$x$\zeta (s)$ and $L(s, \chi)$ [MSC 2020]$2MF$3SUNC019707 606 $a11Mxx$xZeta and L-functions: analitic theory [MSC 2020]$2MF$3SUNC021784 620 $dCambridge$3SUNL000024 700 1$aStopple$b, Jeffrey$3SUNV044995$0725704 712 $aCambridge university$3SUNV000097$4650 801 $aIT$bSOL$c20201012$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Stopple - A primer of analytic number theory. from Pythagoras to Riemann.pdf$zContents 912 $aSUN0056707 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 11-XX 4293 $e08 7563 I 20061130 996 $aPrimer of analytic number theory$91424448 997 $aUNICAMPANIA