LEADER 01380nam2 22003131i 450 001 SUN0055308 005 20061107120000.0 010 $a88-214-0513-3 100 $a20061107r19781994 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ<<‰Progetto agli stati limite delle strutture in c. a.>> 1$fAntonio Migliacci, Franco Mola 205 $a2. ed 210 $arist 215 $aMilano [etc.]$cMasson, 1994. - XIX, 411 p.$d24 cm. 461 1$1001SUN0055305$12001 $aProgetto agli stati limite delle strutture in c. a.$fAntonio Migliacci, Franco Mola$v1$1205 $a2. ed$1210 $arist$1215 $aMilano$cMasson, 1994. - v.$d24 cm. 606 $aStrutture in cemento armato$xCalcolo$2FI$3SUNC009216 620 $dMilano$3SUNL000284 676 $a624.18341$v21 700 1$aMigliacci$b, Antonio$3SUNV024112$03616 701 1$aMola$b, Franco$3SUNV043492$03617 712 $aMasson $3SUNV000050$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0055308 950 $aUFFICIO DI BIBLIOTECA DEI DIPARTIMENTI DI INGEGNERIA$d05 CONS G III 064 $e05 1653 995 $aUFFICIO DI BIBLIOTECA DEI DIPARTIMENTI DI INGEGNERIA$bIT-CE0100$h1653$kCONS G III 064$oc$qa 996 $aProgetto agli stati limite delle strutture in c. a. 1$91405351 997 $aUNICAMPANIA LEADER 02974nam 2200697 450 001 996466373503316 005 20211012154015.0 010 $a3-540-49041-8 024 7 $a10.1007/BFb0074039 035 $a(CKB)1000000000437193 035 $a(SSID)ssj0000323056 035 $a(PQKBManifestationID)12064851 035 $a(PQKBTitleCode)TC0000323056 035 $a(PQKBWorkID)10296287 035 $a(PQKB)10336414 035 $a(DE-He213)978-3-540-49041-8 035 $a(MiAaPQ)EBC5585024 035 $a(MiAaPQ)EBC6523279 035 $a(Au-PeEL)EBL5585024 035 $a(OCoLC)1066197258 035 $a(Au-PeEL)EBL6523279 035 $a(OCoLC)1058160511 035 $a(PPN)155168290 035 $a(EXLCZ)991000000000437193 100 $a20211012d1994 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aExplicit formulas for regularized products and series /$fJay Jorgenson & Serge Lang, Dorian Goldfeld 205 $a1st ed. 1994. 210 1$aBerlin, Germany ;$aNew York, New York :$cSpringer-Verlag,$d[1994] 210 4$d©1994 215 $a1 online resource (VIII, 160 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1593 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-58673-3 320 $aIncludes bibliographical references and index. 330 $aThe theory of explicit formulas for regularized products and series forms a natural continuation of the analytic theory developed in LNM 1564. These explicit formulas can be used to describe the quantitative behavior of various objects in analytic number theory and spectral theory. The present book deals with other applications arising from Gaussian test functions, leading to theta inversion formulas and corresponding new types of zeta functions which are Gaussian transforms of theta series rather than Mellin transforms, and satisfy additive functional equations. Their wide range of applications includes the spectral theory of a broad class of manifolds and also the theory of zeta functions in number theory and representation theory. Here the hyperbolic 3-manifolds are given as a significant example. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1593 606 $aSpectral theory (Mathematics) 606 $aSequences (Mathematics) 606 $aNumber theory 606 $aFunctions, Zeta 615 0$aSpectral theory (Mathematics) 615 0$aSequences (Mathematics) 615 0$aNumber theory. 615 0$aFunctions, Zeta. 676 $a512/.7 686 $a11M36$2msc 700 $aJorgenson$b Jay$060132 702 $aGoldfeld$b D$g(Dorian), 702 $aLang$b Serge$f1927-2005, 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996466373503316 996 $aExplicit formulas for regularized products and series$92831402 997 $aUNISA