LEADER 01286nam0 2200313 i 450 001 SUN0054088 005 20160126125322.724 010 $a05-216-1325-6$d0.00 010 $a978-05-216-1325-5 100 $a20061004d2005 |0engc50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aGeometry and topology$fMiles Reid, Balazs Szendroi 210 $aCambridge$cCambridge university$d2005 215 $aXVIII, 196 p.$cill.$d26 cm. 606 $a51-XX$xGeometry [MSC 2020]$2MF$3SUNC019810 606 $a54-XX$xGeneral topology [MSC 2020]$2MF$3SUNC020587 606 $a51F25$xOrthogonal and unitary groups in metric geometry [MSC 2020]$2MF$3SUNC023820 620 $dCambridge$3SUNL000024 700 1$aReid$b, Miles$3SUNV022252$062539 701 1$aSzendroi$b, Balazss$3SUNV042742$0726294 712 $aCambridge university$3SUNV000097$4650 801 $aIT$bSOL$c20201019$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Reid, Szendroi - Geometry and topology.pdf$zContents 912 $aSUN0054088 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 51-XX 3638 $e08 7491 I 20061004 996 $aGeometry and topology$91425222 997 $aUNICAMPANIA LEADER 06777nam 22005772 450 001 9910791746803321 005 20151002020706.0 010 $a1-61444-209-6 035 $a(CKB)2560000000081401 035 $a(SSID)ssj0000577625 035 $a(PQKBManifestationID)11347937 035 $a(PQKBTitleCode)TC0000577625 035 $a(PQKBWorkID)10576756 035 $a(PQKB)10272527 035 $a(UkCbUP)CR9781614442097 035 $a(MiAaPQ)EBC3330374 035 $a(Au-PeEL)EBL3330374 035 $a(CaPaEBR)ebr10728523 035 $a(OCoLC)929120469 035 $a(RPAM)14779275 035 $a(EXLCZ)992560000000081401 100 $a20120305d2007|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 12$aA garden of integrals /$fFrank Burk$b[electronic resource] 210 1$aWashington :$cMathematical Association of America,$d2007. 215 $a1 online resource (xiv, 281 pages) $cdigital, PDF file(s) 225 0 $aDolciani Mathematical Expositions, $vv. 31 225 0$aDolciani mathematical expositions ;$vno. 31 300 $aTitle from publisher's bibliographic system (viewed on 02 Oct 2015). 311 $a0-88385-356-6 311 $a0-88385-337-X 320 $aIncludes bibliographical references and index. 327 $tForeword --$gAn historical overview --$g1.1.$tRearrangements --$g1.2.$tThe lune of Hippocrates --$g1.3.$tExdoxus and the method of exhaustion --$g1.4.$tArchimedes' method --$t1.5.$tGottfried Leibniz and Isaac Newton --$g1.6.$tAugustin-Louis Cauchy --$g1.7.$tBernhard Riemann --$g1.8.$tThomas Stieltjes --$g1.9.$tHenri Lebesgue --$g1.10.$tThe Lebesgue-Stieltjes integral --$g1.11.$tRalph Henstock and Jaroslav Kurzweil --$g1.12.$tNorbert Wiener --$g1.13.$tRichard Feynman --$g1.14.$tReferences --$g2.$tThe Cauchy integral --$g2.1.$tExploring integration --$g2.2.$tCauchy's integral --$g2.3.$tRecovering functions by integration --$g2.4.$tRecovering functions by differentiation --$g2.5.$tA convergence theorem --$g2.6.$tJoseph Fourier --$g2.7.$tP.G. Lejeune Dirichlet --$g2.8.$tPatrick Billingsley's example --$g2.9.$tSummary --$g2.10.$tReferences --$g3.$tThe Riemann integral --$g3.1.$tRiemann's integral --$g3.2.$tCriteria for Riemann integrability --$g3.3.$tCauchy and Darboux criteria for Riemann integrability --$g3.4.$tWeakening continuity --$g3.5.$tMonotonic functions are Riemann integrable --$g3.6.$tLebesgue's criteria --$g3.7.$tEvaluating a? la Riemann --$g3.8.$tSequences of Riemann integrable functions --$g3.9.$tThe Cantor set --$g3.10.$tA nowhere dense set of positive measure --$g3.11.$tCantor functions --$g3.12.$tVolterra's example --$g3.13.$tLengths of graphs and the Cantor function --$g3.14.$tSummary --$g3.15.$tReferences. 327 $g4.$tRiemann-Stieltjes integral --$g4.1.$tGeneralizing the Riemann integral--$g4.2.$tDiscontinuities --$g4.3.$tExistence of Riemann-Stieltjes integrals --$g4.4.$tMonotonicity of [null] --$g4.5.$tEuler's summation formula --$g4.6.$tUniform convergence and R-S integration --$g4.7.$tReferences --$g5.$tLebesgue measure --$g5.1.$tLebesgue's idea --$g5.2.$tMeasurable sets --$g5.3.$tLebesgue measurable sets and Carathe?odory --$g5.4.$tSigma algebras --$g5.5.$tBorel sets --$g5.6.$tApproximating measurable sets --$g5.7.$tMeasurable functions --$g5.8.$tMore measureable functions --$g5.9.$tWhat does monotonicity tell us? --$g5.10.$tLebesgue's differentiation theorem --$g5.11.$tReferences --$g6.$tThe Lebesgue-Stieltjes integral --$g6.1.$tIntroduction --$g6.2.$tIntegrability : Riemann ensures Lebesgue --$g6.3.$tConvergence theorems --$g6.4.$tFundamental theorems for the Lebesgue integral --$g6.5.$tSpaces --$g6.6.$tLē[-pi, pi] and Fourier series --$g6.7.$tLebesgue measure in the plane and Fubini's theorem --$g6.8.$tSummary--$tReferences --$g7.$tThe Lebesgue-Stieltjes integral --$g7.1.$tL-S measures and monotone increasing functions --$g7.2.$tCarathe?odory's measurability criterion --$g7.3.$tAvoiding complacency --$g7.4.$tL-S measures and nonnegative Lebesgue integrable functions --$g7.5.$tL-S measures and random variables --$g7.6.$tThe Lebesgue-Stieltjes integral --$g7.7.$tA fundamental theorem for L-S integrals --$g7.8.$tReferences. 327 $g8.$tThe Henstock-Kurzweil integral --$g8.1.$tThe generalized Riemann integral --$g8.2.$tGauges and [infinity]-fine partitions --$g8.3.$tH-K integrable functions --$g8.4.$tThe Cauchy criterion for H-K integrability --$g8.5.$tHenstock's lemma --$g8.6.$tConvergence theorems for the H-K integral --$g8.7.$tSome properties of the H-K integral --$g8.8.$tThe second fundamental theorem --$g8.9.$tSummary--$g8.10.$tReferences --$g9.$tThe Wiener integral --$g9.1.$tBrownian motion --$g9.2.$tConstruction of the Wiener measure --$g9.3.$tWiener's theorem --$g9.4.$tMeasurable functionals --$g9.5.$tThe Wiener integral --$g9.6.$tFunctionals dependent on a finite number of t values --$g9.7.$tKac's theorem --$g9.8.$tReferences --$g10.$tFeynman integral --$g10.1.$tIntroduction --$g10.2.$tSumming probability amplitudes --$g10.3.$tA simple example --$g10.4.$tThe Fourier transform --$g10.5.$tThe convolution product --$g10.6.$tThe Schwartz space --$g10.7.$tSolving Schro?dinger problem A --$g10.8.$tAn abstract Cauchy problem --$g10.9.$tSolving in the Schwartz space --$g10.10.$tSolving Schro?dinger problem B --$g10.11.$tReferences --$tIndex --$tAbout the author. 330 $aThe derivative and the integral are the fundamental notions of calculus. Though there is essentially only one derivative, there are a variety of integrals, developed over the years for a variety of purposes, and this book describes them. No other single source treats all of the integrals of Cauchy, Riemann, Riemann-Stieltjes, Lebesgue, Lebesgue-Steiltjes, Henstock-Kurzweil, Weiner, and Feynman. The basic properties of each are proved, their similarities and differences are pointed out, and the reason for their existence and their uses are given. Historical information is plentiful. Advanced undergraduate mathematics majors, graduate students, and faculty members are the audience for the book. Even experienced faculty members are unlikely to be aware of all of the integrals in the Garden of Integrals and the book provides an opportunity to see them and appreciate the richness of the idea of integral. Professor Burke's clear and well-motivated exposition makes this book a joy to read. 606 $aIntegrals 615 0$aIntegrals. 676 $a515/.43 700 $aBurk$b Frank$0253701 702 $aScully$b Terence$f1935- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910791746803321 996 $aA garden of integrals$93694343 997 $aUNINA LEADER 05013oam 2200577 450 001 9910787210603321 005 20190911103511.0 010 $a1-4522-8443-1 010 $a1-4522-7750-8 010 $a1-4833-8794-1 035 $a(OCoLC)888186253 035 $a(MiFhGG)GVRL8TPZ 035 $a(EXLCZ)993710000000333627 100 $a20121126h20132013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aMaking the common core standards work $eusing professional development to build world-class schools /$fRobert J. Manley, Richard J. Hawkins ; foreword by Dan Domenech 210 $aThousand Oaks, Calif. $cCorwin$dc2013 210 1$aThousand Oaks, California :$cCorwin,$d[2013] 210 4$d?2013 215 $a1 online resource (xxiii, 261 pages) $cillustrations 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a1-4522-5857-0 320 $aIncludes bibliographical references and index. 327 $aC; Contents; Dedication; Foreword; Preface; Acknowledgments; About the Authors; Introduction: Why American Schools Must Move Toward Common Core State Standards; The World Is Flat ; The Problem and the Solution: Education; Can Government Rescue Our Schools? ; SECTION I - DESIGNING COMPETITIVE CURRICULUM FOR A GLOBAL ECONOMY ; Chapter 1 - Common Core State Standards: What Are They? ; Common Core State Standards: More Than Standards With an International Flavor ; A Quick Trip Around the World ; Moving Forward ; Chapter 2 - The School Leader's Role in Making the Common Core State Standards Work 327 $aCreating Guiding Ideas to Implement the Common Core State Standards Guiding Ideas and Evidence ; Getting to How: Operationalize Your Guiding Ideas; Identifying the Innovation ; Teaching the Change; The Social and Emotional Literacy Components of the Common Core State Standards ; School Leaders and Teachers Partner to Help Students ; Inspiring Trust, Creativity, Transparency, and Success: A Framework for Loose Versus Tight Leadership ; Part I: Building Understanding About the Issue and Its Impact on Your Organization ; Part II: Moving From Understanding to Action 327 $aSECTION II - HELPING COMMUNITIES CREATE A NEW FUTURE Chapter 3 - Designing Local Curriculum to Absorb the Common Core State Standards in English ; Real-World Applications ; Grades K-2: Phonological Awareness (One Topic); Grades K-2: Key Ideas and Details and Craft and Structure ; Grades 3-5: Fluency (One Topic) ; Grade 5: Reading With Fluency and Accuracy ; Grades 6-8: Key Ideas and Details (One Topic) ; Grades 9-10: English Language Arts Curriculum ; Grades 11-12: Reading and Writing ; Chapter 4 - Designing Local Curriculum to Absorb the Common Core State Standards in Mathematics 327 $aComparison of State and Common Core State Math Standard Emphasis Common Core State Math Standards ; Kindergarten Common Core State Standard and Local Curriculum Math Standards ; Grade 1 Common Core State Standard and Local Curriculum Math Standards ; Grade 2 Common Core State Standard and Local Curriculum Math Standards ; Grade 5 Common Core State Standard and Local Curriculum Math Standards ; Six Domains of Instructional Strategies for All Students; Grade 7 Common Core State Math Standards: Ratios and Proportional Relationships 327 $aGrades 9-10 Common Core State Math Standards: The Real Number SystemGrade 10 Common Core State Math Standards for Geometry: Congruence ; Grade 12 Common Core State Math Standards for Statistics: Using Probability to Make Decisions ; Chapter 5 - Challenges to the Implementation of Rigorous Common Core State Standards ; Testing Policies Do Not Improve Schools ; The Common Core State Standards: Opportunities for Equity and Excellence ; SECTION III - HELPING TEACHERS REDEFINE THEIR PROFESSION ; Chapter 6 - How to Assess Mastery of the Common Core Curriculum State Standards; Direct Instruction 327 $aThe Power of Formative Assessments 330 8 $aWith the common core state standards adopted by the vast majority of U.S. states, educators face the challenge of translating the standards into successful, positive change within schools. Written for school leaders, this practical guide offers a blueprint for implementing and exceeding the new standards using very targeted professional development. 606 $aEducation$xStandards$zUnited States 606 $aEducation$xCurricula$zUnited States 606 $aEducational leadership$zUnited States 615 0$aEducation$xStandards 615 0$aEducation$xCurricula 615 0$aEducational leadership 676 $a379.1580973 700 $aManley$b Robert J.$f1942-$01525138 702 $aHawkins$b Richard J. 702 $aDomenech$b Daniel A. 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910787210603321 996 $aMaking the common core standards work$93766288 997 $aUNINA