LEADER 01623nam0 2200325 i 450 001 SUN0053740 005 20180502090411.987 010 $a978-27-05-66049-9$d0.00 100 $a20060929d1989 |0frec50 ba 101 $afre 102 $aFR 105 $a|||| ||||| 200 1 $aLe *formalisme des six opérations de Grothendieck pour les Dx-modules cohérents$esystemes différentiels$fZ. Mebkhout 210 $aParis, Hermann$d1989 215 $a253 p.$d24 cm. 410 1$1001SUN0049770$12001 $aTravaux en cours$v35$1210 $aParis$cHermann. 606 $a14-XX$xAlgebraic geometry [MSC 2020]$2MF$3SUNC019702 606 $a14F10$xDifferentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials [MSC 2020]$2MF$3SUNC023847 606 $a14F40$xde Rham cohomology and algebraic geometry [MSC 2020]$2MF$3SUNC023897 606 $a32C37$xDuality theorems for analytic spaces [MSC 2020]$2MF$3SUNC023910 606 $a32-XX$xSeveral complex variables and analytic spaces [MSC 2020]$2MF$3SUNC024999 606 $a32C38$xSheaves of differential operators and their modules, $D$-modules [MSC 2020]$2MF$3SUNC029017 620 $dParis$3SUNL000046 700 1$aMebkhout$b, Z.$3SUNV042450$0726124 712 $aHermann$3SUNV001226$4650 801 $aIT$bSOL$c20201019$gRICA 912 $aSUN0053740 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 14-XX 2665 $e08 2841 I 20060929 996 $aFormalisme des six operations de Grothendieck pour les Dx-modules coherents$91427102 997 $aUNICAMPANIA