LEADER 01148nam0 22002771i 450 001 SUN0028255 005 20140625025023.238 010 $a00-7707-990-6 100 $a20041118d1995 |0engc50 ba 101 $aeng 102 $aGB 105 $a|||| ||||| 200 1 $aStructural aspects of building conservation$fPoul Beckmann 210 $aLondon$cMcGraw-Hill$dc1995 215 $axix, 286 p.$cill. plans.$d24 cm. 410 1$1001SUN0028254$12001 $aMcGraw-Hill international series in civil engineering$1210 $aLondon$cMcGraw-Hill. 620 $aGB$dLondon$3SUNL000015 676 $a690.24$v21 700 1$aBeckmann$b, Poul$3SUNV023467$0728422 712 $aMcGraw Hill$3SUNV000135$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0028255 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$d01 PREST IIFb59 $e01 3378 995 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$bIT-CE0107$h3378$kPREST IIFb59$op$qa 996 $aStructural aspects of building conservation$91431226 997 $aUNICAMPANIA LEADER 04953nam 2200721 a 450 001 9911006662303321 005 20200520144314.0 010 $a0-19-157969-6 010 $a1-282-34929-5 010 $a9786612349294 010 $a1-61583-130-4 010 $a0-19-155263-1 035 $a(CKB)2560000000298363 035 $a(EBL)679380 035 $a(OCoLC)489252381 035 $a(SSID)ssj0000287874 035 $a(PQKBManifestationID)11912646 035 $a(PQKBTitleCode)TC0000287874 035 $a(PQKBWorkID)10373077 035 $a(PQKB)10458647 035 $a(StDuBDS)EDZ0000075785 035 $a(MiAaPQ)EBC679380 035 $a(MiAaPQ)EBC7036789 035 $a(Au-PeEL)EBL7036789 035 $a(PPN)164388648 035 $a(OCoLC)1336402164 035 $a(EXLCZ)992560000000298363 100 $a20081125d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAcoustic microscopy /$fG.A.D. Briggs, O.V. Kolosov 205 $a2nd ed. 210 $aOxford ;$aNew York $cOxford University Press$d2010 215 $a1 online resource (383 p.) 225 1 $aMonographs on the physics and chemistry of materials 300 $aDescription based upon print version of record. 311 08$a0-19-923273-3 311 08$a0-19-171635-9 320 $aIncludes bibliographical references (p. [325]-345) and index. 327 $aContents; List of symbols; 1 Son et lumie?re; 1.1 Composites; 1.2 Rocks; 1.3 Biological matrix; 1.4 What else?; 2 Focusing and scanning; 2.1 Focused acoustic beams; 2.2 Scanning in transmission; 2.3 Reflection acoustic microscopy; 3 Resolution; 3.1 Diffraction and noise; 3.2 The coupling fluid; 3.3 Cryogenic microscopy; 3.4 Non-linear enhancement of resolution; 3.5 Aliasing; 3.6 Does defocusing degrade the resolution?; 4 Lens design and selection; 4.1 Interior imaging; 4.2 Surface imaging; 4.3 Wanted and unwanted signals; 5 Electronic circuits for quantitative microscopy 327 $a5.1 Time and frequency domains5.2 Quasi-monochromatic systems; 5.3 Very short pulse techniques; 6 A little elementary acoustics; 6.1 Scalar theory; 6.2 Tensor derivation of acoustic waves in solids; 6.3 Rayleigh waves; 6.4 Reflection; 6.5 Materials constants; 7 Contrast theory; 7.1 Wave theory of V(z); 7.2 Ray model of V(z); 7.3 Tweedledum or Tweedledee?; 8 Experimental elastic microanalysis; 8.1 Measurement of the reflectance function; 8.2 Ray methods; 8.3 Time-resolved techniques; 8.4 Phew!; 9 Biological tissue; 9.1 A soft option; 9.2 Cell cultures; 9.3 Histological sections 327 $a9.4 Stiff tissue9.5 Bone; 10 Layered structures; 10.1 Subsurface imaging; 10.2 Waves in layers; 10.3 Near surface imaging; 10.4 Layers edge on; 11 Anisotropy; 11.1 Bulk anisotropy; 11.2 Waves in anisotropic surfaces; 11.3 Anisotropic reflectance functions; 11.4 Cylindrical lens anisotropic V(z); 11.5 Spherical lens anisotropic V(z); 11.6 Plastic deformation; 11.7 Grain boundaries; 12 Surface cracks and boundaries; 12.1 Initial observations; 12.2 Contrast theory of surface cracks; 12.3 Extension to three dimensions; 12.4 How fine a crack can you see?; 12.5 Contrast at boundaries 327 $a12.6 Time-resolved measurements and crack tip diffraction13 Acoustically excited probe microscopy; 13.1 Mechanical diode detection; 13.2 Experimental UFM implementation; 13.3 UFM contrast theory; 13.4 Quantitative measurements of contact stiffness; 13.5 UFM picture gallery; 13.6 Image interpretation - effects of adhesion and topography; 13.7 Superlubricity; 13.8 Defects below the surface; 13.9 Time-resolved nanoscale phenomena; 14 So what happens when you defocus?; References; Index; A; B; C; D; E; F; G; H; I; J; K; L; M; N; O; P; Q; R; S; T; U; V; W; Y; Z 330 $aAcoustic microscopy enables the elastic properties of materials to be imaged and measured with the resolution of a good microscope. By using frequencies in the microwave regime, it is possible to make the acoustic wavelength comparable with the wavelength of light, and hence to achieve a resolution comparable with an optical microscope. Solids can support both longitudinal and transverse acoustic waves. At surfaces a unique combination of the two known as Raleigh waves canpropagate, and in many circumstances these dominate the contrast in acoustic microscopy. Following the invention of scannin 410 0$aMonographs on the physics and chemistry of materials. 606 $aMaterials$xMicroscopy 606 $aAcoustic microscopy 615 0$aMaterials$xMicroscopy. 615 0$aAcoustic microscopy. 676 $a620.1/1299 676 $a620.11294 700 $aBriggs$b Andrew$0111754 701 $aKolosov$b O. V$g(Oleg V.)$01824755 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911006662303321 996 $aAcoustic microscopy$94392060 997 $aUNINA