LEADER 01040nam0-2200349---450- 001 990009572390403321 005 20120514151726.0 010 $a978-88-6159-310-7 035 $a000957239 035 $aFED01000957239 035 $a(Aleph)000957239FED01 035 $a000957239 100 $a20120514d2006----km-y0itay50------ba 101 1 $aita$ceng 102 $aIT 105 $a--------001yy 200 1 $a<>declino dell'uomo pubblico$fRichard Sennett$gtraduzione di Federica Gusmeroli 210 $aMilano$cBruno Mondadori$d2006 215 $a420 p.$d20 cm 225 1 $aEconomica$v122 320 $aContiene indice dei nomi (pp. 417-420) 454 0$12001$a<>fall of pubblic man$952308 610 0 $aIndividuo$aRapporto con la società 676 $a302.5$v22$zita 700 1$aSennett,$bRichard$f<1943- >$05898 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009572390403321 952 $a302.5 SEN 1$b5648$fBFS 959 $aBFS 996 $aFall of pubblic man$952308 997 $aUNINA LEADER 01014nam 2200313 450 001 9910288660003321 005 20181024125048.0 010 $a978-1-118-74412-3 100 $a20181024d2014----u--y0engy50----ba 101 0 $aeng 102 $aMA 105 0 $aa-------001yy 200 1 $aApplied statistics and probability for engineers$fDouglas C. Montgomery, George C. Runger 205 $a6th ed. International student version 210 $aSIngapore$cWiley & Sons$d2014 215 $a765 p.$cill.$d25 cm 610 0 $aProbabilità per ingegneria 610 0 $aStatistica applicata per ingegneria 676 $a519.15 700 1$aMontgomery,$bDouglas C.$09293 701 1$aRunger,$bGeorge C.$0447762 801 2$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910288660003321 952 $a10 B II 860A$bBIBLIODIETI240/2018$fDINEL 952 $a10 B II 860B$bBIBLIODIETI241/2018$fDINEL 959 $aDINEL 996 $aApplied statistics and probability for engineers$9104019 997 $aUNINA LEADER 01093nam0 22002891i 450 001 SUN0027756 005 20170913112144.998 010 $a88-430-0043-8 100 $a20041115d1993 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆLe ‰pietre ornamentali in architettura$fGiorgio Blanco 210 $aRoma$cNIS$d1993 215 $a163 p.$cill.$d30 cm. 606 $aRivestimenti murari in pietra$2AR$3SUNC033151 606 $aPavimenti di pietra$2AR$3SUNC033152 620 $dRoma$3SUNL000360 676 $a690.16$v21 700 1$aBlanco$b, Giorgio$3SUNV022170$023799 712 $aNIS$3SUNV000143$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0027756 950 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$d01 PREST IICb39 $e01 1556 995 $aBIBLIOTECA DEL DIPARTIMENTO DI ARCHITETTURA E DISEGNO INDUSTRIALE$bIT-CE0107$h1556$kPREST IICb39$op$qa 996 $aPietre Ornamentali in Architettura$9328137 997 $aUNICAMPANIA LEADER 01084nam--2200373---450- 001 990002800340203316 005 20060824121952.0 010 $a0-306-44159-4 035 $a000280034 035 $aUSA01000280034 035 $a(ALEPH)000280034USA01 035 $a000280034 100 $a20060824h1992----km-y0itay50------ba 101 $aeng 102 $aUS 105 $aa---||||001yy 200 1 $aPottery function$ea use-alteration perspective$fJames M. Skibo 210 $aNew York and London$cPlenum press$dcopyr. 1992 215 $aXV, 205 p.$cill.$d24 cm 225 2 $aInterdisciplinary contributions toarchaeology 410 0$12001$aInterdisciplinary contributions toarchaeology 454 1$12001 461 1$1001-------$12001 606 0 $aCeramiche$yFilippine 676 $a959.9 700 1$aSKIBO,$bJames M.$0594483 801 0$aIT$bsalbc$gISBD 912 $a990002800340203316 951 $aI MT SKI 1$b2651 DBC$cI MT 959 $aBK 969 $aDBC 979 $aDBC$b90$c20060824$lUSA01$h1219 996 $aPottery function$9995337 997 $aUNISA LEADER 03045nam 2200517 450 001 9910816872403321 005 20210618083341.0 010 $a1-119-68681-4 010 $a1-119-68684-9 010 $a1-119-68685-7 035 $a(CKB)4100000010013920 035 $a(MiAaPQ)EBC6001237 035 $a(CaSebORM)9781786304551 035 $a(EXLCZ)994100000010013920 100 $a20200228h20202019 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalysis, modeling and stability of fractional order differential systems 2 $ethe infinite state approach /$fJean-Claude Trigeassou, Nezha Maamri 205 $a1st edition 210 1$aLondon :$cISTE Limited$d[2019] 210 4$d©2019 215 $a1 online resource (409 pages) $cillustrations 225 1 $aSystems and industrial engineering series 311 $a1-78630-455-4 320 $aIncludes bibliographical references and index. 330 $aThis book introduces an original fractional calculus methodology ('the infinite state approach') which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation. With this approach, fundamental issues such as system state interpretation and system initialization ? long considered to be major theoretical pitfalls ? have been solved easily. Although originally introduced for numerical simulation and identification of FDEs, this approach also provides original solutions to many problems such as the initial conditions of fractional derivatives, the uniqueness of FDS transients, formulation of analytical transients, fractional differentiation of functions, state observation and control, definition of fractional energy, and Lyapunov stability analysis of linear and nonlinear fractional order systems. This second volume focuses on the initialization, observation and control of the distributed state, followed by stability analysis of fractional differential systems. 410 0$aSystems and industrial engineering series. 606 $aFractional calculus 606 $aFractional differential equations 606 $aFractional integrals 615 0$aFractional calculus. 615 0$aFractional differential equations. 615 0$aFractional integrals. 676 $a515.83 700 $aTrigeassou$b Jean-Claude$0880053 702 $aMaamri$b Nezha 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910816872403321 996 $aAnalysis, modeling and stability of fractional order differential systems 2$94037360 997 $aUNINA