LEADER 01118nam0 22002771i 450 001 SUN0025665 005 20061013120000.0 010 $a88-13-23011-7 020 $aIT$b2001 6933 100 $a20041014d2000 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aSpecificità aziendali ed uniformità nella rilevazione dei costi$eil caso delle aziende per il diritto allo studio universitario in Toscana$fAntonio Barretta 210 $aPadova$cCEDAM$d2000 215 $aXIII, 208 p.$d25 cm. 620 $dPadova$3SUNL000007 676 $a353.8243$v21 700 1$aBarretta$b, Antonio$3SUNV021467$0117849 712 $aCEDAM$3SUNV005537$4650 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0025665 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$d03 PREST IIBm $e03 6906 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI ECONOMIA$bIT-CE0106$h6906$kPREST IIBm$op$qa 996 $aSpecificità aziendali ed uniformità nella rilevazione dei costi$9985243 997 $aUNICAMPANIA LEADER 07103nam 22006852 450 001 9910452670903321 005 20151005020624.0 010 $a1-139-88875-7 010 $a1-139-57949-5 010 $a1-139-09516-1 010 $a1-139-57346-2 010 $a1-139-57092-7 010 $a1-139-56911-2 010 $a1-139-57267-9 010 $a1-283-63867-3 010 $a1-139-57001-3 035 $a(CKB)2550000000707810 035 $a(EBL)1025041 035 $a(OCoLC)812066766 035 $a(SSID)ssj0000721657 035 $a(PQKBManifestationID)11421708 035 $a(PQKBTitleCode)TC0000721657 035 $a(PQKBWorkID)10692969 035 $a(PQKB)10295068 035 $a(UkCbUP)CR9781139095167 035 $a(MiAaPQ)EBC1025041 035 $a(Au-PeEL)EBL1025041 035 $a(CaPaEBR)ebr10608463 035 $a(CaONFJC)MIL395113 035 $a(EXLCZ)992550000000707810 100 $a20110608d2012|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Road to Maxwell's demon /$fMeir Hemmo, Orly Shenker$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2012. 215 $a1 online resource (xii, 327 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-42432-1 311 $a1-107-01968-0 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. Thermodynamics -- 2.1. The experience of asymmetry in time -- 2.2. The Law of Conservation of Energy -- 2.3. The Law of Approach to Equilibrium -- 2.4. The Second Law of Thermodynamics -- 2.5. The status of the laws of thermodynamics -- 3. Classical mechanics -- 3.1. The fundamental theory of the world -- 3.2. Introducing classical mechanics -- 3.3. Mechanical states -- 3.4. Time evolution of mechanical states -- 3.5. Thermodynamic magnitudes -- 3.6. A mechanical no-go theorem -- 3.7. The ergodic approach -- 3.8. Conclusion -- 4. Time -- 4.1. Introduction: why mechanics cannot underwrite thermodynamics -- 4.2. Classical kinematics -- 4.3. The direction of time and the direction of velocity in time -- 4.4. The description of mechanical states -- 4.5. Velocity reversal -- 4.6. Retrodiction -- 4.7. Time reversal and time-reversal invariance -- 4.8. Why the time-reversal invariance of classical mechanics matters -- 5. Macrostates -- 5.1. The physical nature of macrostates -- 5.2. How do macrostates come about? -- 5.3. Explaining thermodynamics with macrostates -- 5.4. The dynamics of macrostates -- 5.5. The physical origin of thermodynamic macrostates -- 5.6. Boltzmann's macrostates -- 5.7. Maxwell-Boltzmann distribution -- 5.8. The observer in statistical mechanics -- 5.9. Counterfactual observers -- 6. Probability -- 6.1. Introduction -- 6.2. Probability in statistical mechanics -- 6.3. Choice of measure in statistical mechanics -- 6.4. Measure of a macrostate and its probability -- 6.5. Transition probabilities without blobs -- 6.6. Dependence on observed history? -- 6.7. The spin echo experiments -- 6.8. Robustness of transition probabilities -- 6.9. No probability over initial conditions -- 7. Entropy -- 7.1. Introduction -- 7.2. Entropy -- 7.3. The distinction between entropy and probability -- 7.4. Equilibrium in statistical mechanics -- 7.5. Law of Approach to Equilibrium -- 7.6. Second Law of Thermodynamics -- 7.7. Boltzmann's H-theorem -- 7.8. Loschmidt's reversibility objection -- 7.9. Poincare's recurrence theorem -- 7.10. Boltzmann's combinatorial argument -- 7.11. Back to Boltzmann's equation: Lanford's theorem -- 7.12. Conclusion -- 8. Typicality -- 8.1. Introduction -- 8.2. The explanatory arrow in statistical mechanics -- 8.3. Typicality -- 8.4. Are there natural measures? -- 8.5. Typical initial conditions -- 8.6. Measure-1 theorems and typicality -- 8.7. Conclusion -- 9. Measurement -- 9.1. Introduction -- 9.2. What is measurement in classical mechanics? -- 9.3. Collapse in classical measurement -- 9.4. State preparation -- 9.5. The shadows approach -- 9.6. Entropy -- 9.7. Status of the observer -- 10. The past -- 10.1. Introduction -- 10.2. The problem of retrodiction -- 10.3. The Past Hypothesis: memory and measurement -- 10.4. The Reliability Hypothesis -- 10.5. Past low entropy hypothesis -- 10.6. Remembering the future -- 10.7. Problem of initial improbable state -- 10.8. The dynamics of the Past Hypothesis -- 10.9. Local and global Past Hypotheses -- 10.10. Past Hypothesis and physics of memory -- 10.11. Memory in a time-reversed universe -- 11. Gibbs -- 11.1. Introduction -- 11.2. The Gibbsian method in equilibrium -- 11.3. Gibbsian method in terms of blobs and macrostates -- 11.4. Gibbsian equilibrium probability distributions -- 11.5. The approach to equilibrium -- 12. Erasure -- 12.1. Introduction -- 12.2. Why there is no microscopic erasure -- 12.3. What is a macroscopic erasure? -- 12.4. Necessary and sufficient conditions for erasure -- 12.5. Logic and entropy -- 12.6. Another logically irreversible operation -- 12.7. Logic and entropy: a model -- 12.8. What does erasure erase? -- 12.9. Conclusion -- 13. Maxwell's Demon -- 13.1. Thermodynamic and statistical mechanical demons -- 13.2. Szilard's insight -- 13.3. Entropy reduction: measurement -- 13.4. Efficiency and predictability -- 13.5. Completing the cycle of operation: erasure -- 13.6. The Liberal Stance -- 13.7. Conclusion -- Appendix A Szilard's engine -- Appendix B Quantum mechanics -- B.1. Albert's approach -- B.2. Bohmian mechanics -- B.3. A quantum mechanical Maxwellian Demon. 330 $aTime asymmetric phenomena are successfully predicted by statistical mechanics. Yet the foundations of this theory are surprisingly shaky. Its explanation for the ease of mixing milk with coffee is incomplete, and even implies that un-mixing them should be just as easy. In this book the authors develop a new conceptual foundation for statistical mechanics that addresses this difficulty. Explaining the notions of macrostates, probability, measurement, memory, and the arrow of time in statistical mechanics, they reach the startling conclusion that Maxwell's Demon, the famous perpetuum mobile, is consistent with the fundamental physical laws. Mathematical treatments are avoided where possible, and instead the authors use novel diagrams to illustrate the text. This is a fascinating book for graduate students and researchers interested in the foundations and philosophy of physics. 606 $aMaxwell's demon 606 $aSecond law of thermodynamics 606 $aStatistical thermodynamics 615 0$aMaxwell's demon. 615 0$aSecond law of thermodynamics. 615 0$aStatistical thermodynamics. 676 $a536/.71 700 $aHemmo$b Meir$01052224 702 $aShenker$b Orly 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452670903321 996 $aThe Road to Maxwell's demon$92483287 997 $aUNINA