LEADER 01533nam0 2200325 i 450 001 SUN0016398 005 20160928100943.625 010 $a35-280-6659-8$d0.00 100 $a20061106d1996 |0engc50 ba 101 $aeng 102 $aDE 105 $a|||| ||||| 200 1 $a*Singular nonlinear partial differential equations$fRaymond Gerard, Hidetoshi Tahara 210 $aBraunschweig$cVieweg$d1996 215 $aVIII, 269 p.$cill.$d23 cm. 410 1$1001SUN0050678$12001 $a*Aspects of mathematics$v28$1210 $aBraunschweig$cVieweg$d1981-2011. 606 $a35-XX$xPartial differential equations [MSC 2020]$2MF$3SUNC019763 606 $a35C10$xSeries solutions to PDEs [MSC 2020]$2MF$3SUNC022736 606 $a35C20$xAsymptotic expansions of solutions to PDEs [MSC 2020]$2MF$3SUNC022990 606 $a35G20$xNonlinear higher-order PDEs [MSC 2020]$2MF$3SUNC023015 620 $dBraunschweig$3SUNL000805 700 1$aGerard$b, Raymond$3SUNV043817$0344535 701 1$aTahara$b, Hidetoshi$3SUNV043818$0729425 712 $aVieweg$3SUNV005302$4650 801 $aIT$bSOL$c20201019$gRICA 856 4 $u/sebina/repository/catalogazione/documenti/Gerard, Tahara - Singular nonlinear partial differential equations.pdf$zContents 912 $aSUN0016398 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI MATEMATICA E FISICA$d08PREST 35-XX 1569 $e08 5118 I 20061106 996 $aSingular nonlinear partial differential equations$91429704 997 $aUNICAMPANIA LEADER 01484cam0-2200337---450 001 9910469659803321 005 20240412132057.0 012 $arir- t:s. o:s. NoQu (3) 1578 (R)$2fei$5IT-NA0105: SG DFT 22 100 $a20210505d1578----km-y0itay5050----ba 101 0 $alat 102 $aBE 140 $aa-----------------bb0------- 200 1 $aP. Ouidii Nasonis Heroidum epistolae, Amorum libri III. De Arte amandi ibri III. De remedio amoris libri II... Omnia ex accuratiss. Andreæ Naugerij castigatione ... 210 $aAntuerpiae$cex officina Christoph. Plantini$d1578 215 $a349, [1] p.$d12° 300 $aTitolo in cornice architettonica 306 $aMarca sul front. 307 $aSegn.: A-Y?. - Ultima carta bianca 318 $aRestaurato$5IT-NA0105: SG DFT 22 517 1 $aHeroidum epistolae, Amorum libri III. De Arte amandi ibri III. De remedio amoris libri II... Omnia ex accuratiss. Andreæ Naugerij castigatione ... 620 $aBelgio.$dAnversa 700 1$aOvidius Naso,$bPublius$f<43 a. C.-17?>$0154954 702 1$aNavagero,$bAndrea$f<1483-1529> 719 00$aPlantin,$gChristophe$4650 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aAQ 912 $a9910469659803321 952 $aSG DFT 22$b2021/914$fFLFBC 959 $aFLFBC 996 $aP. Ouidii Nasonis Heroidum epistolae, Amorum libri III. De Arte amandi ibri III. De remedio amoris libri II... Omnia ex accuratiss. Andreæ Naugerij castigatione ..$92064360 997 $aUNINA LEADER 03841nam 22007815 450 001 9910254291003321 005 20250411151354.0 010 $a3-319-52045-8 024 7 $a10.1007/978-3-319-52045-2 035 $a(CKB)3710000001079876 035 $a(DE-He213)978-3-319-52045-2 035 $a(MiAaPQ)EBC6296491 035 $a(MiAaPQ)EBC5590618 035 $a(Au-PeEL)EBL5590618 035 $a(OCoLC)974463474 035 $a(PPN)198869622 035 $a(EXLCZ)993710000001079876 100 $a20170224d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInformation Geometry and Population Genetics $eThe Mathematical Structure of the Wright-Fisher Model /$fby Julian Hofrichter, Jürgen Jost, Tat Dat Tran 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XII, 320 p. 3 illus., 2 illus. in color.) 225 1 $aUnderstanding Complex Systems,$x1860-0840 311 08$a3-319-52044-X 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. The Wright?Fisher model -- 3. Geometric structures and information geometry -- 4. Continuous approximations -- 5. Recombination -- 6. Moment generating and free energy functionals -- 7. Large deviation theory -- 8. The forward equation -- 9. The backward equation -- 10.Applications -- Appendix -- A. Hypergeometric functions and their generalizations -- Bibliography. 330 $aThe present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field. 410 0$aUnderstanding Complex Systems,$x1860-0840 606 $aBiomathematics 606 $aStatistics 606 $aMedical genetics 606 $aMathematical analysis 606 $aGeometry 606 $aProbabilities 606 $aMathematical and Computational Biology 606 $aStatistical Theory and Methods 606 $aMedical Genetics 606 $aAnalysis 606 $aGeometry 606 $aProbability Theory 615 0$aBiomathematics. 615 0$aStatistics. 615 0$aMedical genetics. 615 0$aMathematical analysis. 615 0$aGeometry. 615 0$aProbabilities. 615 14$aMathematical and Computational Biology. 615 24$aStatistical Theory and Methods. 615 24$aMedical Genetics. 615 24$aAnalysis. 615 24$aGeometry. 615 24$aProbability Theory. 676 $a576.58015118 700 $aHofrichter$b Julian$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767161 702 $aJost$b Jürgen$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTran$b Tat Dat$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254291003321 996 $aInformation Geometry and Population Genetics$92174112 997 $aUNINA