LEADER 01219nam0 22002891i 450 001 SUN0015941 005 20150608091527.367 100 $a20040514d1985 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aBiologia evoluzionistica$fDouglas J. Futuyma 210 $aBologna$cZanichelli$d1985 215 $a469 p.$cill.$d27 cm. 454 1$1001SUN0077782$12001 $aEvolutionary biology$915069 620 $dBologna$3SUNL000003 676 $a576.8$cEvoluzione$v22 700 1$aFutuyma$b, Douglas J.$3SUNV011690$075095 712 $aZanichelli$3SUNV004332$4650 790 1$aFutuyma, D.J.$zFutuyma, Douglas J.$3SUNV062278 790 1$aFutuyma, D. J.$zFutuyma, Douglas J.$3SUNV062279 801 $aIT$bSOL$c20181109$gRICA 912 $aSUN0015941 950 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE$d17 CONS Ac23 $e17 FMF3066 995 $aUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE$bIT-CE0101$gFMF$h3066$kCONS Ac23$oc$qa 996 $aEvolutionary biology$915069 997 $aUNICAMPANIA LEADER 03674nam 22006015 450 001 9910483925903321 005 20251113182211.0 010 $a3-030-71021-1 024 7 $a10.1007/978-3-030-71021-7 035 $a(CKB)4100000011918709 035 $a(DE-He213)978-3-030-71021-7 035 $a(MiAaPQ)EBC6606063 035 $a(Au-PeEL)EBL6606063 035 $a(OCoLC)1250014969 035 $a(PPN)255882149 035 $a(EXLCZ)994100000011918709 100 $a20210505d2021 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Undergraduate Primer in Algebraic Geometry /$fby Ciro Ciliberto 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2021. 215 $a1 online resource (XI, 327 p. 1 illus.) 225 1 $aLa Matematica per il 3+2,$x2038-5757 ;$v129 311 08$a3-030-71020-3 320 $aIncludes bibliographical references and index. 327 $a1 Affine and projective algebraic sets -- 2 Basic notions of elimination theory and applications -- 3 Zariski closed subsets and ideals in the polynomials ring -- 4 Some topological properties -- 5 Regular and rational functions -- 6 Morphisms -- 7 Rational maps -- 8 Product of varieties -- 9 More on elimination theory -- 10 Finite morphisms -- 11 Dimension -- 12 The Cayley form -- 13 Grassmannians -- 14 Smooth and singular points -- 15 Power series -- 16 A ne plane curves -- 17 Projective plane curves -- 18 Resolution of singularities of curves -- 19 Divisors, linear equivalence, linear series -- 20 The Riemann-Roch Theorem. 330 $aThis book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann?Roch and Riemann?Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point?set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter. 410 0$aLa Matematica per il 3+2,$x2038-5757 ;$v129 606 $aGeometry 606 $aProjective geometry 606 $aAlgebra 606 $aGeometry 606 $aProjective Geometry 606 $aAlgebra 615 0$aGeometry. 615 0$aProjective geometry. 615 0$aAlgebra. 615 14$aGeometry. 615 24$aProjective Geometry. 615 24$aAlgebra. 676 $a516.35 700 $aCiliberto$b C$g(Ciro),$f1950-$042512 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910483925903321 996 $aAn Undergraduate Primer in Algebraic Geometry$91972316 997 $aUNINA