LEADER 01507nam0 2200349 450 001 000036928 005 20141121084023.0 010 $a3-519-01443-2 100 $a20140623d1975----km-y0itaa50------ba 101 0 $agrc 102 $aDE 200 1 $aIamblichi De communi mathematica scientia liber$fad fidem codicis Florentini edidit Nicolaus Festa (1891)$geditionem addendis et corrigendis adiunctis curavit Udalricus Klein 210 $aStutgardiae$cin aedibus B. G. Teubneri$d1975 215 $aXXV, 152 p.$d20 cm 225 2 $aBibliotheca scriptorum Graecorum et Romanorum Teubneriana 410 0$12001$aBibliotheca scriptorum Graecorum et Romanorum Teubneriana 500 11$aDe communi mathematica scientia / Iamblichus Chalcidiensis$919836 676 $a182.2$v(22. ed.)$9Filosofia pitagorica 700 0$aIamblichus Chalcidensis$f$0162252 702 1$aFesta,$bNicola 702 1$aKlein,$bUlrich 801 0$aIT$bUniversità della Basilicata - B.I.A.$gREICAT$2unimarc 912 $a000036928 996 $aDe communi mathematica scientia$919836 997 $aUNIBAS CAT $aEXT013$b01$c20140623$lBAS01$h1019 CAT $aEXT013$b01$c20140623$lBAS01$h1020 CAT $aEXT013$b01$c20140623$lBAS01$h1024 CAT $aEXT013$b01$c20140826$lBAS01$h1517 CAT $aEXT013$b01$c20141121$lBAS01$h0840 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA1$APolo Storico-Umanistico$2GEN$BCollezione generale$3Class/1507$678116$5L78116$820140623$f02$FPrestabile Generale LEADER 01220nam 2200361Ia 450 001 996386156603316 005 20200824132713.0 035 $a(CKB)1000000000615005 035 $a(EEBO)2248569074 035 $a(OCoLC)ocm12283296e 035 $a(OCoLC)12283296 035 $a(EXLCZ)991000000000615005 100 $a19850719d1645 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe essence and unitie of the Church Catholike visible, and the prioritie thereof in regard of particular churches discussed$b[electronic resource] /$fby Samuel Hudson .. 210 $aLondon $cPrinted by George Miller for Christopher Meredith ...$d1645 215 $a[4], 52 p 300 $aHand-written change of date on t.p. to 1644. 300 $aReproduction of original in Thomason Collection, British Library. 300 $aMarginal notes. 330 $aeebo-0158 606 $aChristian union 615 0$aChristian union. 700 $aHudson$b Samuel$f17th cent.$01001701 801 0$bEAA 801 1$bEAA 801 2$bm/c 801 2$bWaOLN 906 $aBOOK 912 $a996386156603316 996 $aThe essence and unitie of the Church Catholike visible$92383102 997 $aUNISA LEADER 05342nam 22006374a 450 001 9910830220603321 005 20170815114744.0 010 $a1-281-32188-5 010 $a9786611321888 010 $a0-470-72518-4 010 $a0-470-72517-6 035 $a(CKB)1000000000377270 035 $a(EBL)351165 035 $a(SSID)ssj0000163572 035 $a(PQKBManifestationID)11178447 035 $a(PQKBTitleCode)TC0000163572 035 $a(PQKBWorkID)10117597 035 $a(PQKB)10413237 035 $a(MiAaPQ)EBC351165 035 $a(PPN)188612513 035 $a(OCoLC)212122308 035 $a(EXLCZ)991000000000377270 100 $a20071102d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGlobal sensitivity analysis$b[electronic resource] $ethe primer /$fAndrea Saltelli ... [et al.] 210 $aChichester, England ;$aHoboken, NJ $cJohn Wiley$dc2008 215 $a1 online resource (306 p.) 300 $aDescription based upon print version of record. 311 $a0-470-05997-4 320 $aIncludes bibliographical references (p. [279]-285) and index. 327 $aGlobal Sensitivity Analysis. The Primer; Contents; Preface; 1 Introduction to Sensitivity Analysis; 1.1 Models and Sensitivity Analysis; 1.1.1 Definition; 1.1.2 Models; 1.1.3 Models and Uncertainty; 1.1.4 How to Set Up Uncertainty and Sensitivity Analyses; 1.1.5 Implications for Model Quality; 1.2 Methods and Settings for Sensitivity Analysis - an Introduction; 1.2.1 Local versus Global; 1.2.2 A Test Model; 1.2.3 Scatterplots versus Derivatives; 1.2.4 Sigma-normalized Derivatives; 1.2.5 Monte Carlo and Linear Regression; 1.2.6 Conditional Variances - First Path 327 $a1.2.7 Conditional Variances - Second Path1.2.8 Application to Model (1.3); 1.2.9 A First Setting: 'Factor Prioritization'; 1.2.10 Nonadditive Models; 1.2.11 Higher-order Sensitivity Indices; 1.2.12 Total Effects; 1.2.13 A Second Setting: 'Factor Fixing'; 1.2.14 Rationale for Sensitivity Analysis; 1.2.15 Treating Sets; 1.2.16 Further Methods; 1.2.17 Elementary Effect Test; 1.2.18 Monte Carlo Filtering; 1.3 Nonindependent Input Factors; 1.4 Possible Pitfalls for a Sensitivity Analysis; 1.5 Concluding Remarks; 1.6 Exercises; 1.7 Answers; 1.8 Additional Exercises 327 $a1.9 Solutions to Additional Exercises2 Experimental Designs; 2.1 Introduction; 2.2 Dependency on a Single Parameter; 2.3 Sensitivity Analysis of a Single Parameter; 2.3.1 Random Values; 2.3.2 Stratified Sampling; 2.3.3 Mean and Variance Estimates for Stratified Sampling; 2.4 Sensitivity Analysis of Multiple Parameters; 2.4.1 Linear Models; 2.4.2 One-at-a-time (OAT) Sampling; 2.4.3 Limits on the Number of Influential Parameters; 2.4.4 Fractional Factorial Sampling; 2.4.5 Latin Hypercube Sampling; 2.4.6 Multivariate Stratified Sampling; 2.4.7 Quasi-random Sampling with Low-discrepancy Sequences 327 $a2.5 Group Sampling2.6 Exercises; 2.7 Exercise Solutions; 3 Elementary Effects Method; 3.1 Introduction; 3.2 The Elementary Effects Method; 3.3 The Sampling Strategy and its Optimization; 3.4 The Computation of the Sensitivity Measures; 3.5 Working with Groups; 3.6 The EE Method Step by Step; 3.7 Conclusions; 3.8 Exercises; 3.9 Solutions; 4 Variance-based Methods; 4.1 Different Tests for Different Settings; 4.2 Why Variance?; 4.3 Variance-based Methods. A Brief History; 4.4 Interaction Effects; 4.5 Total Effects; 4.6 How to Compute the Sensitivity Indices; 4.7 FAST and Random Balance Designs 327 $a4.8 Putting the Method to Work: The Infection Dynamics Model4.9 Caveats; 4.10 Exercises; 5 Factor Mapping and Metamodelling; 5.1 Introduction; 5.2 Monte Carlo Filtering (MCF); 5.2.1 Implementation of Monte Carlo Filtering; 5.2.2 Pros and Cons; 5.2.3 Exercises; 5.2.4 Solutions; 5.2.5 Examples; 5.3 Metamodelling and the High-Dimensional Model Representation; 5.3.1 Estimating HDMRs and Metamodels; 5.3.2 A Simple Example; 5.3.3 Another Simple Example; 5.3.4 Exercises; 5.3.5 Solutions to Exercises; 5.4 Conclusions; 6 Sensitivity Analysis: From Theory to Practice 327 $a6.1 Example 1: A Composite Indicator 330 $aComplex mathematical and computational models are used in all areas of society and technology and yet model based science is increasingly contested or refuted, especially when models are applied to controversial themes in domains such as health, the environment or the economy. More stringent standards of proofs are demanded from model-based numbers, especially when these numbers represent potential financial losses, threats to human health or the state of the environment. Quantitative sensitivity analysis is generally agreed to be one such standard. Mathematical models are good at mapping as 606 $aSensitivity theory (Mathematics) 606 $aGlobal analysis (Mathematics) 606 $aMathematical models 615 0$aSensitivity theory (Mathematics) 615 0$aGlobal analysis (Mathematics) 615 0$aMathematical models. 676 $a003 701 $aSaltelli$b A$g(Andrea),$f1953-$0145511 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830220603321 996 $aGlobal sensitivity analysis$94021187 997 $aUNINA