LEADER 01586nam0 2200337 450 001 000034733 005 20141124115025.0 100 $a20130503d2011----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $a----m-------- 200 1 $aMetafore della Coscienza 1543-1687 dal paradigma naturalistico al paradigma meccanicistico$bTesi di dottorato$fdottorando: Ilaria Anzoise$gcoordinatore e tutor: Aurelio Musi$gtutor: Aurelio Musi$gco-tutor: Mauro Maldonato 210 $a[Potenza]$d2011 215 $a207 p., 13 carte di tav.$d30 cm. 300 $aSegue appendice 328 1$aTesi di dottorato: Universitą degli studi della Basilicata, Dottorato di ricerca in Storia dell'Europa mediterranea dall'antichitą all'etą contemporanea, XXIV ciclo, A.a. 2010-2011 676 $a190$v(22. ed.)$9Filosofia occidentale moderna e altra filosofia non orientale 686 $aM-STO/02$cStoria moderna 700 1$aAnzoise,$bIlaria$0446454 801 0$aIT$bUniversitą della Basilicata - B.I.A.$gREICAT$2unimarc 912 $a000034733 996 $aMetafore della Coscienza 1543-1687 dal paradigma naturalistico al paradigma meccanicistico$997529 997 $aUNIBAS BAS $aLETTERE CAT $aSTD086$b01$c20130503$lBAS01$h1206 CAT $aSTD086$b01$c20130503$lBAS01$h1209 CAT $aSTD086$b01$c20130503$lBAS01$h1240 CAT $aTTM$b30$c20140722$lBAS01$h1209 CAT $aTTM$b30$c20141124$lBAS01$h1150 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2TDO$BTesi di Dottorato$3TDL/77$528628-10$820130503$f98$FConsultazione LEADER 06367nam 2200769 450 001 9910153635703321 005 20230525195533.0 010 $a1-61504-733-6 024 7 $a10.4199/C00144ED1V01Y201610ISP067 035 $a(CKB)3710000000962284 035 $a(MiAaPQ)EBC4744545 035 $a(CaBNVSL)swl00406953 035 $a(OCoLC)964085804 035 $a(MOCL)201610ISP067 035 $a(EXLCZ)993710000000962284 100 $a20161206d2017 fy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMolecular mechanisms of body water homeostasis /$fCarolyn M. Ecelbarger, Dharmendra Kumar Chaudhary, Hwal Lee, Swasti Tiwari 210 1$a[San Rafael, California] :$cMorgan & Claypool,$d2017. 215 $a1 online resource (112 pages) $ccolor illustrations 225 1 $aColloquium series on integrated systems physiology,$x2154-5626 ;$v# 68 300 $aPart of: Colloquium digital library of life sciences. 311 $a1-61504-732-8 320 $aIncludes bibliographical references (pages 75-97). 327 $a1. Water, water everywhere -- 1.1 Chapter overview -- 1.2 Body water composition -- 1.2.1 Changes in water homeostasis over the lifespan -- 1.2.2 Body water intake requirements -- 1.3 Measurement of total body water (TBW) -- 1.3.1 Body water compartmentalization -- 1.4 Dehydration -- 1.4.1 Exercise and water requirements -- 1.5 Environmental modulators of body water composition -- 1.5.1 High altitude -- 1.5.2 Extremes in temperature or humidity -- 1.5.3 Dietary alterations -- 327 $a2. The brain, AVP, and water balance -- 2.1 Chapter overview -- 2.2 The brain -- 2.3 Vasopressin and related neuropeptides -- 2.3.1 Regulation of vasopressin production and release -- 2.4 Vasopressin receptors -- 2.4.1 Receptor cloning -- 2.4.2 Receptor activation and signaling -- 2.4.3 Receptor localization -- 2.5 Vasopressin actions -- 2.5.1 Vasopressin and glomerular filtration rate (GFR) -- 2.5.2 Vasopressin and blood pressure control -- 2.5.2.1 AVPR2 are coupled to nitric oxide generation -- 2.5.2.2 Hypertension may correlate with urinary concentrating ability -- 327 $a3. Renal control of water reabsorption -- 3.1 Chapter overview -- 3.2 Blood filtration -- 3.3 The countercurrent multiplier mechanism -- 3.3.1 The Na-K-2Cl cotransporter (NKCC2) -- 3.3.2 Gradient in the inner medulla -- 3.4 The collecting duct -- 3.5 Urea transporters -- 3.6 Renal aquaporins -- 3.6.1 Aquaporin 1 -- 3.6.2 Aquaporin 2 -- 3.6.2.1 Short-term AQP2 regulation -- 3.6.2.2 Long-term AQP2 regulation -- 3.6.2.3 Regulators of AQP2 -- 3.6.3 Aquaporins 3 and 4 -- 3.6.4 Other aquaporins -- 327 $a4. Hyponatremia -- 4.1 Chapter overview -- 4.2 Causes and forms of hyponatremia -- 4.3 Hyponatremia and the brain -- 4.4 Hyponatremia and bone health -- 4.5 The syndrome of inappropriate antidiuretic hormone (SIADH) -- 4.5.1 Exercise-induced hyponatremia -- 4.6 Vasopressin escape and molecular mechanismS -- 4.7 Therapies/interventions -- 327 $a5. Diabetes insipidus -- 5.1 Chapter overview -- 5.2 Central diabetes insipidus (CDI) -- 5.3 Nephrogenic diabetes insipidus (NDI) -- 5.3.1 Mutations in the vasopressin V2 receptor -- 5.3.2 Mutations in AQP2 -- 5.4 Acquired NDI -- 5.5 Treatments for DI -- 327 $a6. Additional pathophysiological states associated with impaired water balance -- 6.1 Chapter overview -- 6.2 Heart failure -- 6.3 Hypertension -- 6.4 Cirrhosis of the liver -- 6.5 Compulsive water drinking -- 6.6 Burn injuries -- 6.7 Medications that alter fluid dynamics -- 6.7.1 Diuretics -- 6.7.2 Aquaretics -- 6.7.3 Peroxisome proliferator-activated receptor, subtype [gamma] (PPAR [gamma]) agonists -- 327 $aReferences -- Author biographies. 330 3 $aThis book discusses our intimate relationship with and dependence on water, how the body regulates its water levels, and various pathophysiological states associated with impairments in body water homeostasis. The human body consists of 70-80% water. Therefore, concise control of water homeostasis is essential to survival and involves coordination of several systems, but primarily the brain and kidney systems. Water requirements of the average healthy human range between 2-4 L/d, and a major portion of this can come from food sources. The major hormonal regulator of water balance is the anti-diuretic hormone, vasopressin. Vasopressin, a 9-amino acid peptide, is produced in the hypothalamus, stored in the posterior pituitary, and secreted when plasma osmolality rises. Vasopressin acts on the kidney to conserve water. The kidneys filter 180 L of blood per day, consisting of about 50-65% water, and reabsorb around 99% of this in the proximal tubule, distal tubule, and collecting duct, producing only 1-2 L of urine. The vasopressin-sensitive distal tubule and collecting duct are responsible for fine-tuning water reabsorption. Conditions exist, however, where urine cannot be concentrated effectively. This is known as diabetes insipidus and can lead to dehydration and failure to thrive. At the other extreme, hyponatremia (low serum sodium) is the inability to adequately dilute urine or get rid of free body water in excess of body needs, a serious and sometimes fatal condition. 410 0$aColloquium digital library of life sciences. 410 0$aColloquium series on integrated systems physiology ;$v# 68.$x2154-5626 606 $aOsmoregulation 606 $aWater in the body 606 $aOsmoregulation 606 $aBody Water 610 $awater homeostasis 610 $atotal body water 610 $akidney 610 $ahydration 610 $aaquaporin 610 $adiabetes insipidus 610 $ahyponatremia 610 $avasopressin 610 $aosmolality 615 0$aOsmoregulation. 615 0$aWater in the body. 615 2$aOsmoregulation. 615 20$aBody Water. 676 $a572.3 700 $aEcelbarger$b Carolyn M.$01264405 702 $aChaudhary$b Dharmendra Kumar 702 $aLee$b Hwal 702 $aTiwari$b Swasti 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910153635703321 996 $aMolecular mechanisms of body water homeostasis$92964335 997 $aUNINA LEADER 03208nam 2200529 450 001 9910678250403321 005 20230524044417.0 010 $a9783031250910$b(electronic bk.) 010 $z9783031250903 024 7 $a10.1007/978-3-031-25091-0 035 $a(MiAaPQ)EBC7209146 035 $a(Au-PeEL)EBL7209146 035 $a(CKB)26192075200041 035 $a(DE-He213)978-3-031-25091-0 035 $a(PPN)26909461X 035 $a(EXLCZ)9926192075200041 100 $a20230524d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSearch for exotic Higgs boson decays to merged diphotons $ea novel CMS analysis using end-to-end deep learning /$fMichael Andrews 205 $a1st ed. 2023. 210 1$aBerlin, Germany :$cSpringer,$d[2023] 210 4$d©2023 215 $a1 online resource (193 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 311 08$aPrint version: Andrews, Michael Search for Exotic Higgs Boson Decays to Merged Diphotons Cham : Springer,c2023 9783031250903 320 $aIncludes bibliographical references. 327 $aIntroduction -- The LHC and the CMS detector -- Theory & phenomenology -- Analysis strategy -- Data sets -- Signal selection -- a mass regression -- Analysis -- Results -- Conclusions -- Supplementary studies. 330 $aThis book describes the first application at CMS of deep learning algorithms trained directly on low-level, ?raw? detector data, or so-called end-to-end physics reconstruction. Growing interest in searches for exotic new physics in the CMS collaboration at the Large Hadron Collider at CERN has highlighted the need for a new generation of particle reconstruction algorithms. For many exotic physics searches, sensitivity is constrained not by the ability to extract information from particle-level data but by inefficiencies in the reconstruction of the particle-level quantities themselves. The technique achieves a breakthrough in the reconstruction of highly merged photon pairs that are completely unresolved in the CMS detector. This newfound ability is used to perform the first direct search for exotic Higgs boson decays to a pair of hypothetical light scalar particles H?aa, each subsequently decaying to a pair of highly merged photons a?yy, an analysis once thought impossible to perform. The book concludes with an outlook on potential new exotic searches made accessible by this new reconstruction paradigm. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 606 $aDeep learning (Machine learning) 606 $aHiggs bosons 606 $aParticles (Nuclear physics)$xDiffraction 615 0$aDeep learning (Machine learning) 615 0$aHiggs bosons. 615 0$aParticles (Nuclear physics)$xDiffraction. 676 $a006.31 700 $aAndrews$b Michael$f1835-1917,$01359230 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910678250403321 996 $aSearch for exotic Higgs boson decays to merged diphotons$93373324 997 $aUNINA