LEADER 00955cam0-22003491i-450- 001 990000700730403321 005 20160330084321.0 035 $a000070073 035 $aFED01000070073 035 $a(Aleph)000070073FED01 035 $a000070073 100 $a20020821d1983----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $a<>museo negli anni '80$fFranco Minissi 210 $aRoma$cKappa$d1983 215 $a151 p.$cin gran parte ill.$d24 cm 225 1 $aLinee evolutive$eCollana di architettura 610 0 $aMuseologia 610 0 $aMuseografia 610 0 $aMusei$aProgettazione 676 $a727.6 700 1$aMinissi,$bFranco$035673 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000700730403321 952 $aARCH B 811$b14321/1253$fFARBC 952 $aARCH B 1287$b5272$fFARBC 959 $aFARBC 996 $aMuseo negli anni '80$9323701 997 $aUNINA LEADER 01946nam 2200457 450 001 000015424 005 20050718115600.0 010 $a0-582-99452-7$b(vol. 1.) 010 $a0-582-99454-3$b(vol. 2.) 100 $a20030728d1986----km-y0itay0103----ba 101 0 $aeng 102 $aGB 200 1 $aSemigroups, theory and applications$fH. Brezis, M.G. Crandall, F. Kappel, eds. 210 $aHarlow$cLongman Scientific & Technical$d1986 215 $a2 v.$d25 cm. 225 2 $aPitman research notes in mathematics series$v141 327 1 $aVol. 1. - 252 p.$aVol. 2. - 252 p. 410 0$12001$aPitman research notes in mathematics series 606 $aOperatori non lineari 676 $a515.7248$v(21. ed.)$9Analisi funzionale. Operatori non lineari 691 $a35Qxx$9Partial differential equations. Equations of mathematical physics and other areas of application 691 $a47H20$9Nonlinear operators and their properties. Semigroups of nonlinear operators 691 $a47Jxx$9Operator theory. Equations and inequalities involving nonlinear operators 702 1$aBrezis,$bH. 702 1$aCrandall,$bM. G. 702 1$aKappel,$bF. 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000015424 996 $aSemigroups, theory and applications$983258 997 $aUNIBAS BAS $aMONSCI BAS $aSCIENZE CAT $aEXT002$b01$c20030728$lBAS01$h1028 CAT $c20050601$lBAS01$h1755 CAT $abatch$b01$c20050718$lBAS01$h1052 CAT $c20050718$lBAS01$h1111 CAT $c20050718$lBAS01$h1141 CAT $c20050718$lBAS01$h1156 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2GEN$BCollezione generale$3MAT$664888$5S64888$820030728$b1$e252$f51$FRiservati$hVol. 1. Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2GEN$BCollezione generale$3MAT$664898$5S64898$820030728$b2$e252$f51$FRiservati$hVol. 2. LEADER 02570nam 2200493Ia 450 001 9910437879603321 005 20200520144314.0 010 $a3-642-38565-6 024 7 $a10.1007/978-3-642-38565-0 035 $a(OCoLC)853663817 035 $a(MiFhGG)GVRL6UOH 035 $a(CKB)2670000000533791 035 $a(MiAaPQ)EBC1398800 035 $a(EXLCZ)992670000000533791 100 $a20130805d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aApplication of integrable systems to phase transitions /$fC.B. Wang 205 $a1st ed. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (x, 219 pages) $cillustrations 225 0 $aGale eBooks 300 $aDescription based upon print version of record. 311 $a3-642-38564-8 311 $a3-642-44024-X 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay?s Law. 330 $aThe eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory. 606 $aPhase transformations (Statistical physics) 606 $aStatistical physics 615 0$aPhase transformations (Statistical physics) 615 0$aStatistical physics. 676 $a530.474 700 $aWang$b C. B$01764008 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437879603321 996 $aApplication of integrable systems to phase transitions$94204745 997 $aUNINA