LEADER 01863nam 2200433 450 001 000013105 005 20050718115500.0 010 $a3-540-09245-5 100 $a20030512d1979----km-y0itay0103----ba 101 0 $aeng 102 $aDE 200 1 $aAsymptotic analysis$efrom theory to application$fedited by F. Verhulst 210 $aBerlin [etc.]$cSpringer$d1979 215 $a240 p.$d25 cm. 225 2 $aLecture notes in mathematics$v711 410 0$12001$aLecture notes in mathematics 606 $aEquazioni differenziali 676 $a515.352$v(21. ed.)$9Analisi. Equazioni differenziali ordinarie 691 $a34D15$9Ordinary differential equations. Stability theory. Singualr perturbations 691 $a34E20$9Ordinary differential equations. Asymptotic theory. Singular perturbations, turning point theory, WKB methods 691 $a34C30$9Ordinary differential equations. Qualitative theory. Manifolds of solutions 691 $a35B25$9Partial differential equations. Qualitative properties of solutions. Singular perturbations 691 $a70H99$9Mechanics of particles and systems. Hamiltonian and Lagrangian mechanics 691 $a76W05$9Fluid mechanics. Magnetohydrodynamics and electrohydrodynamics 702 1$aVerhulst,$bFerdinand 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000013105 996 $aAsymptotic analysis$981125 997 $aUNIBAS BAS $aMONSCI BAS $aSCIENZE CAT $aEXT002$b01$c20030512$lBAS01$h0946 CAT $c20050601$lBAS01$h1755 CAT $abatch$b01$c20050718$lBAS01$h1051 CAT $c20050718$lBAS01$h1110 CAT $c20050718$lBAS01$h1140 CAT $c20050718$lBAS01$h1155 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2GEN$BCollezione generale$3MAT$631914$5S31914$820030512$f51$FRiservati