LEADER 01775nam 2200433 450 001 000013085 005 20050718115500.0 010 $a3-540-09108-4 100 $a20030509d1979----km-y0itay0103----ba 101 0 $aeng 102 $aDE 200 1 $aFunction theory on manifolds which possess a pole$fR. E. Greene, H. Wu 210 $aBerlin [etc.]$cSpringer$d1979 215 $a213 p.$d25 cm. 225 2 $aLecture notes in mathematics$v699 410 0$12001$aLecture notes in mathematics 606 $aVarietà complesse 606 $aFunzioni 676 $a516.362$v(21. ed.)$9Geometria integrale (Geometria differenziale globale) 691 $a53C55$9Differential geometry. Global differential geometry. Hermitian and Kählerian manifolds 691 $a32Qxx$9Several complex variables and analytic spaces. Complex manifolds 691 $a32F99$9Several complex variables and analytic spaces. Geometric convexity 691 $a35N15$9Partial differential equations. Overdetermined systems. $\overline\partial$ -Neumann problem and generalizations; formal complexes 700 1$aGreene,$bR. E.$0441201 701 1$aWu,$bH.$0441202 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000013085 996 $aFunction theory on manifolds which possess a pole$981046 997 $aUNIBAS BAS $aMONSCI BAS $aSCIENZE CAT $aEXT002$b01$c20030509$lBAS01$h1609 CAT $c20050601$lBAS01$h1755 CAT $abatch$b01$c20050718$lBAS01$h1051 CAT $c20050718$lBAS01$h1110 CAT $c20050718$lBAS01$h1140 CAT $c20050718$lBAS01$h1155 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2GEN$BCollezione generale$3MAT$631902$5S31902$820030509$f51$FRiservati