LEADER 02347nam 2200481 450 001 000012647 005 20050718115500.0 010 $a3-540-57623-1 100 $a20030429d1994----km-y0itay0103----ba 101 0 $aeng 102 $aDE 200 1 $aMartingale Hardy spaces and their applications in Fourier analysis$fFerenc Weisz 210 $aBerlin [etc.]$cSpringer$dc1994 215 $aVIII, 217 p.$d24 cm. 225 2 $aLecture notes in mathematics$v1568 410 0$12001$aLecture notes in mathematics 606 $aAnalisi funzionale 606 $aProcesso stocastico 676 $a519.287$v(21. ed.)$9Probabilità e matematica applicata. Speranza matematica e previsione 691 $a60G42$9Stochastic processes. Martingales with discrete parameter 691 $a60G46$9Stochastic processes. Martingales and classical analysis 691 $a42B30$9Fourier analysis in several variables. Hp-spaces 691 $a42C10$9Nontrigonometric Fourier analysis. Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 691 $a60G48$9Stochastic processes. Generalizations of martingales 691 $a46E30$9Functional analysis. Linear function spaces and their duals. Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 691 $a42A20$9Fourier analysis in one variable. Convergence and absolute convergence of Fourier and trigonometric series 691 $a42A50$9Fourier analysis in one variable. Conjugate functions, conjugate series, singular integrals 700 1$aWeisz,$bFerenc$060660 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000012647 996 $aMartingale Hardy spaces and their applications in Fourier analysis$978727 997 $aUNIBAS BAS $aMONSCI BAS $aSCIENZE CAT $aEXT003$b01$c20030429$lBAS01$h1007 CAT $aEXT003$b01$c20030508$lBAS01$h1755 CAT $c20050601$lBAS01$h1755 CAT $abatch$b01$c20050718$lBAS01$h1051 CAT $c20050718$lBAS01$h1110 CAT $c20050718$lBAS01$h1140 CAT $c20050718$lBAS01$h1155 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA5$ADipartimento Matematica$2GEN$BCollezione generale$3MAT$63162$5M3162$820030429$f51$FRiservati