LEADER 01260nam2-22003371i-450- 001 990000824360403321 005 20001010 010 $a2-213-02988-1 035 $a000082436 035 $aFED01000082436 035 $a(Aleph)000082436FED01 035 $a000082436 100 $a20001010d--------km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a2: Dessins de Jean-Baptiste Tierce / choixdes oeuvres et legendes par Maurice Lever; notice su Tierce par Olivier Michel. - [Paris] : Fayard, [1995]. - 123 p. : in granparte ill. ; 25x28 cmclc.: 210 $a[Paris]$cFayard$d1995- 215 $a2 v.$d25x28 cm 300 $aIn custodia 461 0$1001000079761$12001$aVoyage d'Italie ou Dissertations critiques, historiques et philosophiques sur les villes de Florence, Rome, Naples ... 610 0 $aNAPOLI$aviaggiatori stranieri$asec. XVIII 610 0 $aITALIA$aviaggiatori stranieri$asec. XVIII 700 1$aSade,$bDonatien Alphonse François$f<1740-1814>$0392046 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990000824360403321 952 $a000082436000001$b000082436000001$fFARBC 959 $aFARBC 996 $a2: Dessins de Jean-Baptiste Tierce$9347130 997 $aUNINA DB $aING01 LEADER 01537nam 2200445 450 001 000010654 005 20060117141434.0 010 $a0-12-181872-1 100 $a20020306d1969----km-y0itay0103----ba 101 0 $aeng 102 $aUS 200 1 $aSteroids and terpenoids$fedited by Raymond B. Clayton 210 $aNew York...[etc.]$cAcademic Press$d1969 215 $aXVII, 903 p.$d24 cm 225 2 $aMethods in enzymology$v15 410 1$12001$aMethods in enzymology$v15 606 1 $aSteroidi 606 2 $aTerpeni 676 $a572.579$v(21. ed.)$9Biochimica. Steroidi 676 $a547.71$v(21. ed.)$9Terpeni e oli essenziali 702 1$aClayton,$bRaymond B. 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000010654 996 $aSteroids and terpenoids$977037 997 $aUNIBAS BAS $aAGRARIA CAT $aSTD009$b01$c20020306$lBAS01$h1335 CAT $aSTD031$b01$c20030925$lBAS01$h1731 CAT $aTORRE$b20$c20030929$lBAS01$h1257 CAT $aTORRE$b20$c20030929$lBAS01$h1304 CAT $aTORRE$b20$c20031022$lBAS01$h1206 CAT $c20050601$lBAS01$h1754 CAT $abatch$b01$c20050718$lBAS01$h1050 CAT $c20050718$lBAS01$h1109 CAT $c20050718$lBAS01$h1140 CAT $c20050718$lBAS01$h1154 CAT $aTTM$b30$c20051128$lBAS01$h1119 CAT $aTTM$b30$c20060117$lBAS01$h1414 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2DID$BDidattica$3PTS$630596$5A30596$820030925$f98$FConsultazione LEADER 03473nam 22006255 450 001 9910146312703321 005 20250730104742.0 010 $a3-540-48073-0 024 7 $a10.1007/BFb0094677 035 $a(CKB)1000000000437294 035 $a(SSID)ssj0000325600 035 $a(PQKBManifestationID)12068807 035 $a(PQKBTitleCode)TC0000325600 035 $a(PQKBWorkID)10325091 035 $a(PQKB)11513190 035 $a(DE-He213)978-3-540-48073-0 035 $a(MiAaPQ)EBC5577464 035 $a(Au-PeEL)EBL5577464 035 $a(OCoLC)1066182046 035 $a(MiAaPQ)EBC6853125 035 $a(Au-PeEL)EBL6853125 035 $a(PPN)155216244 035 $a(EXLCZ)991000000000437294 100 $a20121227d1999 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPeriodic Solutions of the N-Body Problem /$fby Kenneth R. Meyer 205 $a1st ed. 1999. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1999. 215 $a1 online resource (XIV, 154 p.) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v1719 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-66630-3 327 $aEquations of celestial mechanics -- Hamiltonian systems -- Central configurations -- Symmetries, integrals, and reduction -- Theory of periodic solutions -- Satellite orbits -- The restricted problem -- Lunar orbits -- Comet orbits -- Hill?s lunar equations -- The elliptic problem. 330 $aThe N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the N-body problem on the reduced space. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1719 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aGlobal Analysis and Analysis on Manifolds 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 14$aGlobal Analysis and Analysis on Manifolds. 676 $a514.74 686 $a58F05$2msc 700 $aMeyer$b Kenneth R$g(Kenneth Ray),$f1937-$059481 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910146312703321 996 $aPeriodic solutions of the N-body problem$978790 997 $aUNINA