LEADER 01505nam 2200421 450 001 000009313 005 20050718115300.0 100 $a20020109d1984----km-y0itay0103----ba 101 0 $aita 102 $aIT 200 1 $aIntroduzione alla probabilità e alla statistica$fRomano Scozzafava 210 $aRoma$cLibreria eredi Virgilio Veschi$dristampa 1984 215 $a277 p.$d24 cm. 606 $aCalcolo delle probabilità 606 $aStatistica$xMetodi matematici 676 $a519.2$v(20. ed.)$9Probabilità 676 $a519.5$v(20. ed.)$9Statistica matematica 700 1$aScozzafava,$bRomano$08399 801 0$aIT$bUniversità della Basilicata - B.I.A.$gRICA$2unimarc 912 $a000009313 996 $aIntroduzione alla probabilit? e alla statistica$977896 997 $aUNIBAS BAS $aMONSCI BAS $aMONOGR BAS $aSCIENZE CAT $aSTD004$b01$c20020109$lBAS01$h1603 CAT $aTORRE$b20$c20020124$lBAS01$h1200 CAT $aTORRE$b20$c20020507$lBAS01$h1603 CAT $aTORRE$b20$c20020507$lBAS01$h1626 CAT $aTORRE$b20$c20040126$lBAS01$h1602 CAT $aTORRE$b20$c20041220$lBAS01$h1334 CAT $c20050601$lBAS01$h1754 CAT $abatch$b01$c20050718$lBAS01$h1050 CAT $c20050718$lBAS01$h1109 CAT $c20050718$lBAS01$h1139 CAT $c20050718$lBAS01$h1153 FMT Z30 -1$lBAS01$LBAS01$mBOOK$1BASA2$APolo Tecnico-Scientifico$2DID$BDidattica$3PTS.s4.p3.12$6239$5S239$820020109$f04$FPrestabile Didattica LEADER 01082cam a2200289 i 4500 001 991003097889707536 008 070213s2000 it 00 lat 020 $a8817171328 035 $ab13629037-39ule_inst 040 $aDip.to Filologia Class. e Scienze Filosofiche$bita 041 $alat$aita$hlat 100 1 $aPlautus, Titus Maccius$0166580 245 12$aI prigionieri /$cPlauto ; prefazione di Cesare Questa , introduzione di Guido Paduano ; traduzione di Mario Scàndola. 250 $a2. ed. 260 $aMilano :$bRizzoli,$c2000 300 $a188 p. ;$c18 cm 440 0$aBUR.$pClassici greci e latini ;$n1132 500 $aTesto latino a fronte 504 $aContiene riferimenti bibliogafaici 700 1 $aPaduano, Guido 700 1 $aQuesta, Cesare 907 $a.b13629037$b02-04-14$c10-12-07 912 $a991003097889707536 945 $aLE007 BUR LAT Plautus 13$g1$i2007000135051$lle007$op$pE7.50$q-$rl$s- $t0$u0$v0$w0$x0$y.i14630722$z10-12-07 996 $aPrigionieri$9168324 997 $aUNISALENTO 998 $ale007$b10-12-07$cm$da $e-$flat$git $h2$i0 LEADER 03387nam 2200601Ia 450 001 9910438146003321 005 20200520144314.0 010 $a1-283-91080-2 010 $a3-642-33696-5 024 7 $a10.1007/978-3-642-33696-6 035 $a(CKB)2670000000317386 035 $a(EBL)1082714 035 $a(OCoLC)823388571 035 $a(SSID)ssj0000878934 035 $a(PQKBManifestationID)11479440 035 $a(PQKBTitleCode)TC0000878934 035 $a(PQKBWorkID)10850867 035 $a(PQKB)10412346 035 $a(DE-He213)978-3-642-33696-6 035 $a(MiAaPQ)EBC1082714 035 $a(PPN)168325195 035 $a(EXLCZ)992670000000317386 100 $a20121227d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFree boundary problems and asymptotic behavior of singularly perturbed partial differential equations /$fKelei Wang 205 $a1st ed. 2013. 210 $aBerlin ;$aHeidelberg $cSpringer$dc2013 215 $a1 online resource (116 p.) 225 0$aSpringer theses,$x2190-5053 300 $aDescription based upon print version of record. 311 $a3-642-44248-X 311 $a3-642-33695-7 320 $aIncludes bibliographical references and index. 327 $aForeword -- Acknowledgements -- Introduction -- Uniqueness, Stability and Uniform Lipschitz Estimates -- Uniqueness in the Singular Limit -- The Dynamics of One Dimensional Singular Limiting Problem.- Approximate Clean Up Lemma.- Asymptotics in Strong Competition -- The Limited Equation of a Singular Perturbed System -- Reference -- Index. 330 $aIn Bose-Einstein condensates from physics and competing species system from population dynamics, it is observed that different condensates (or species) tend to be separated. This is known as the phase separation phenomena. These pose a new class of free boundary problems of nonlinear partial differential equations. Besides its great difficulty in mathematics, the study of this problem will help us get a better understanding of the phase separation phenomena. This thesis is devoted to the study of the asymptotic behavior of singularly perturbed partial differential equations and some related free boundary problems arising from Bose-Einstein condensation theory and competing species model. We study the free boundary problems in the singular limit and give some characterizations, and use this to study the dynamical behavior of competing species when the competition is strong. These results have many applications in physics and biology.   It was nominated by the Graduate University of Chinese Academy of Sciences as an outstanding PhD thesis. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aBoundary value problems$xAsymptotic theory 606 $aDifferential equations, Partial$xAsymptotic theory 615 0$aBoundary value problems$xAsymptotic theory. 615 0$aDifferential equations, Partial$xAsymptotic theory. 676 $a515.353 700 $aWang$b Kelei$01058835 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438146003321 996 $aFree Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations$92502699 997 $aUNINA