LEADER 01669nam1 2200433 450 001 000005052 005 20130429122353.0 100 $a20130429d--------km-y0itay0103----ba 101 0 $aita 102 $aIT 200 1 $aEnciclopedia delle scienze filosofiche in compendio$fGeorg Wilhelm Friedrich Hegel$gcon le aggiunte a cura di Leopold von Henning, Karl Ludwig Michelet e Ludwig Boumann 210 $aTorino$cUnione Tipografico-Editrice Torinese 215 $a3 v.$d24 cm 225 1 $aClassici della filosofia 410 0$12001$aClassici della filosofia 463 \1$1001000005053$12001 $aFilosofia dello spirito 463 \1$1001000034045$12001 $aFilosofia della natura 463 \1$1001000034047$12001 $a<> scienza della logica 676 $a193$v(22. ed.)$9Filosofia occidentale moderna. Germania e Austria 700 1$aHegel,$bGeorg Wilhelm Friedrich$f<1770-1831>$0289533 702 1$aHenning,$bLeopold von 702 1$aMichelet,$bKarl Ludwig 702 1$aBoumann,$bLudwig 801 0$aIT$bUniversità della Basilicata - B.I.A.$gREICAT$2unimarc 912 $a000005052 996 $aEncyclopadie der philosophischen Wissenschaften im Grundrisse$925256 997 $aUNIBAS CAT $aDILEO$b20$c20000717$lBAS01$h1238 CAT $c20000920$lBAS01$h1833 CAT $c20001010$lBAS01$h1636 CAT $c20050601$lBAS01$h1753 CAT $abatch$b01$c20050718$lBAS01$h1048 CAT $c20050718$lBAS01$h1107 CAT $c20050718$lBAS01$h1137 CAT $c20050718$lBAS01$h1152 CAT $aATR$b40$c20090907$lBAS01$h0912 CAT $aATR$b01$c20130429$lBAS01$h1027 CAT $aATR$b01$c20130429$lBAS01$h1223 FMT LEADER 04013nam 2200661Ia 450 001 9910456713703321 005 20200520144314.0 010 $a1-282-45845-0 010 $a9786612458453 010 $a1-4008-3047-8 024 7 $a10.1515/9781400830473 035 $a(CKB)2550000000003446 035 $a(EBL)483564 035 $a(OCoLC)593209718 035 $a(SSID)ssj0000340202 035 $a(PQKBManifestationID)11256716 035 $a(PQKBTitleCode)TC0000340202 035 $a(PQKBWorkID)10365411 035 $a(PQKB)11372268 035 $a(MiAaPQ)EBC483564 035 $a(DE-B1597)446938 035 $a(OCoLC)979578497 035 $a(DE-B1597)9781400830473 035 $a(Au-PeEL)EBL483564 035 $a(CaPaEBR)ebr10364769 035 $a(CaONFJC)MIL245845 035 $a(EXLCZ)992550000000003446 100 $a20090206d2009 uy 0 101 0 $aeng 135 $aurunu||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe mathematical mechanic$b[electronic resource] $eusing physical reasoning to solve problems /$fMark Levi 205 $aCourse Book 210 $aPrinceton ;$aOxford $cPrinceton University Press$dc2009 215 $a1 online resource (197 p.) 300 $aDescription based upon print version of record. 311 $a0-691-15456-2 311 $a0-691-14020-0 320 $aIncludes bibliographical references (p. 183-184) and index. 327 $t Frontmatter -- $tContents -- $t1 Introduction -- $t2 The Pythagorean Theorem -- $t3 Minima and Maxima -- $t4 Inequalities by Electric Shorting -- $t5 Center of Mass: Proofs and Solutions -- $t6 Geometry and Motion -- $t7 Computing Integrals Using Mechanics -- $t8. The Euler-Lagrange Equation via Stretched Springs -- $t9 Lenses, Telescopes, and Hamiltonian Mechanics -- $t10 A Bicycle Wheel and the Gauss-Bonnet Theorem -- $t11 Complex Variables Made Simple(r) -- $tAppendix. Physical Background -- $tBibliography -- $tIndex 330 $aEverybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist. Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it's possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles. The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us. 606 $aProblem solving 606 $aMathematical physics 608 $aElectronic books. 615 0$aProblem solving. 615 0$aMathematical physics. 676 $a510 676 $a530.15 700 $aLevi$b Mark$f1951-$0772034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910456713703321 996 $aThe mathematical mechanic$92468395 997 $aUNINA LEADER 01385nam 2200397 450 001 9910704957403321 005 20181129090400.0 035 $a(CKB)5470000002446171 035 $a(OCoLC)1076542839 035 $a(EXLCZ)995470000002446171 100 $a20181129d2013 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aForest Service national strategic framework for invasive species management 210 1$aWashington, D.C. :$cUnited States Department of Agriculture, Forest Service,$d2013. 215 $a1 online resource (35 pages) $ccolor illustrations 300 $a"August 2013." 300 $a"FS-1017." 320 $aIncludes bibliographical references (pages 34). 606 $aNonindigenous pests$xControl$zUnited States 606 $aIntroduced organisms$xControl$zUnited States 606 $aRestoration ecology$zUnited States 606 $aEnvironmental protection$zUnited States 615 0$aNonindigenous pests$xControl 615 0$aIntroduced organisms$xControl 615 0$aRestoration ecology 615 0$aEnvironmental protection 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910704957403321 996 $aForest Service national strategic framework for invasive species management$93354724 997 $aUNINA