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2 Preliminaries.

This book constitutes the refereed proceedings of the 12th Asian
Symposium on Programming Languages and Systems, APLAS 2014,
held in Singapore, Singapore in November 2014. The 20 regular papers
presented together with the abstracts of 3 invited talks were carefully
reviewed and selected from 57 submissions. The papers cover a variety
of foundational and practical issues in programming languages and
systems - ranging from foundational to practical issues. The papers
focus on topics such as semantics, logics, foundational theory; design
of languages, type systems and foundational calculi; domain-specific
languages; compilers, interpreters, abstract machines; program
derivation, synthesis and transformation; program analysis, verification,
model-checking; logic, constraint, probabilistic and quantum
programming; software security; concurrency and parallelism; as well
as tools and environments for programming and implementation.


