
UNISALENTO9910034625697075361. Record Nr.

Titolo Figure e motivi della contemplazione nelle teologie medievali / Barbara
Faes De Mottoni

Pubbl/distr/stampa Tavernuzze : SISMEL Edizioni del Galluzzo, 2007

ISBN 9788884502155

Descrizione fisica 181 p. ; 21 cm

Collana Micrologus' library ; 18

Disciplina 248.34

Lingua di pubblicazione Italiano

Formato

Livello bibliografico

Nota di bibliografia Bibliografia: p. 167-171

Autore Faes De Mottoni, Barbara

Materiale a stampa

Monografia

UNIORUON000728192. Record Nr.

Titolo Ethiopian studies dedicated to Wolf Leslau on the occasion of his
seventy-fifth birthday November 14th, 1981 by friends and colleagues
/ Edited by Stanislav Segert and Andras J.E Bodrogligeti

Pubbl/distr/stampa Wiesbaden, : Otto Harrassowitz, 1983

ISBN 34-470-2314-7

Descrizione fisica xii, 582 p., c. e p. di tav. ; 25 cm

Disciplina 963

Soggetti Archeologia - Etiopia
Arte - Etiopia
ETIOPIA - Storia
ETNOLOGIA - Etiopia
Lingua amarica - Studi
LINGUA GE'EZ - Studi
LINGUE CUSCITICHE - Studi
LINGUE SEMITICHE - Lessico
MUSICA ETIOPICA

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Materiale a stampa

Monografia

UNINA99104838181033213. Record Nr.

Titolo Programming Languages and Systems : 12th Asian Symposium, APLAS
2014, Singapore, Singapore, November 17-19, 2014, Proceedings / /
edited by Jacques Garrigue

Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, ,
2014

ISBN 3-319-12736-5

Descrizione fisica 1 online resource (XVIII, 490 p. 117 illus.)

Collana Programming and Software Engineering, , 2945-9168 ; ; 8858

Disciplina 005.13

Soggetti Compilers (Computer programs)
Software engineering
Computer science
Machine theory
Compilers and Interpreters
Software Engineering
Computer Science Logic and Foundations of Programming
Formal Languages and Automata Theory

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed. 2014.]

Livello bibliografico

Note generali Includes Index.

Nota di contenuto Intro -- Preface -- Organization -- What Is the Essence of Bidirectional
Programming? -- Incremental Adoption of Static-Typing -- NetKAT - A
Formal System for the Verification of Networks -- Table of Contents --
Invited Presentation -- NetKAT - A Formal System for the Verification
of Networks -- 1 Introduction -- 1.1 Software-Defined Networking --
1.2 NetKAT -- 2 NetKATBasics -- 2.1 Kleene Algebra (KA) -- 2.2
Kleene Algebra with Tests (KAT) -- 2.3 NetKAT -- 2.4 Semantics -- 3
Examples -- 3.1 Encoding Network Topology -- 3.2 Switch Policies --
3.3 Reachability -- 3.4 All-Pairs Reachability -- 3.5 Waypointing -- 3.6

Materiale a stampa

Monografia

Forwarding Loops -- 3.7 Other Applications -- 4 Soundness and
Completeness -- 5 NetKAT Coalgebra and a Decision Procedure -- 5.1
NetKAT Coalgebra -- 5.2 The Brzozowski Derivative -- 5.3 Matrix
Representation -- 5.4 Kleene's Theorem for NetKAT -- 6
Implementation -- 6.1 Optimizations -- 7 Related Work -- 8
Conclusion -- References -- Regular Papers -- Optimized Compilation
of Multiset Rewriting with Comprehensions -- 1 Introduction -- 2 A
Motivating Example -- 3 Syntax and Notations -- 4 Operational
Semantics of CHRcp -- 4.1 Semantics of Matching and Rule Body
Execution -- 4.2 Operational Semantics -- 5 Compiling CHRcp Rules --
5.1 Introducing CHRcp Join Ordering -- 5.2 Bootstrapping for Active
Comprehension Head Constraints -- 5.3 Uniqueness Enforcement -- 6
Building Join Orderings -- 7 Executing Join Orderings -- 8 Correctness
of CHRcp Abstract Matching Machine -- 9 Prototype and Preliminary
Empirical Results -- 10 RelatedWork -- 11 Conclusion and Future
Works -- References -- Logic Programming and Logarithmic Space -- 1
Introduction -- 1.1 Geometry of Interaction and Logic Programming --
1.2 Unification and Complexity -- 2 The Unification Semiring -- 2.1
Flows and Wirings -- 2.2 The Balanced Semiring -- 2.3 The
Computation Graph.
2.4 Tensor Product and Other Semirings -- 3 Words and Observations
-- 3.1 Representation of Words -- 3.2 Observations -- 4 Logarithmic
Space -- 4.1 Completeness: Observations as Pointer Machines -- 4.2
Soundness of Observations -- 5 Conclusion -- References --
Automatic Memory Management Based on Program Transformation
Using Ownership -- 1 Introduction -- 2 Suenaga-Kobayashi Type
System -- 2.1 Language -- 2.2 Type System -- 3 Program
Transformation -- 3.1 Casts -- 3.2 Constraints -- 3.3 Algorithm -- 3.4
Soundness and Completeness -- 3.5 Extension -- 4 Related Work -- 5
Conclusion -- References -- The Essence of Ruby -- 1 Introduction --
2 Overview of Ruby and Our Strategies -- 3 The Essential Core of Ruby
-- 3.1 The Core Object Calculus -- 3.2 The Core Control Calculus --
3.3 The Core Ruby Calculus -- 4 Extension to the Core Calculi -- 5 The
Ruby Calculus -- 6 Elaborating Ruby to the Ruby Calculus -- 7
Conformity Evaluation -- 8 Related Works -- 9 Conclusions --
References -- Types for Flexible Objects -- 1 Introduction -- 1.1 Key
Features of TinyBang -- 2 Overview -- 2.1 Language Features for
Flexible Objects -- 2.2 Self-awareness and Resealable Objects -- 2.3
Flexible Object Operations -- 3 Formalization -- 3.1 A-Translation --
3.2 Operational Semantics -- 3.3 Type System -- 4 Related Work -- 5
Conclusions -- References -- A Translation of Intersection and Union
Types for the -Calculus -- 1 Introduction -- 2 Intersection and
Union Types for the -Calculus -- 2.1 The -Calculus -- 2.2 An
Intersection and Union Type System for the -Calculus -- 2.3 The
Type System of van Bakel, Barbanera and de'Liguoro -- 2.4 A
Translation of Intersection and Union Types -- 3 Intersection and Union
Types for the -Calculus -- 3.1 The -Calculus -- 3.2 An
Intersection and Union Type System for the -Calculus -- 3.3
Translating into .
3.4 Characterisation of Strongly Normalising Terms -- 4 Conclusion --
References -- A Formalized Proof of Strong Normalization for Guarded
Recursive Types -- 1 Introduction -- 2 Guarded Recursive Types and
Their Semantics -- 3 Formalized Syntax -- 3.1 Types Represented
Coinductively -- 3.2 Well-Typed Terms -- 3.3 Type Equality -- 3.4
Examples -- 4 Reduction -- 5 Strong Normalization -- 6 Soundness --
7 Conclusions -- References -- Functional Pearl: Nearest Shelters in
Manhattan -- 1 Specification -- 2 Looking Toward the Northeast -- 3 A
Divide-and-Conquer Approach -- 3.1 Finding the Nearest Shelter in a

List Homomorphism -- 3.2 Sweeping -- 3.3 Complexity Analysis -- 4
A Thinning Approach -- 4.1 Minimum, Thinning, and Filtering -- 4.2
Thinning the Set of Shelters -- 4.3 A Splay Tree Representation -- 4.4
Complexity Analysis -- 5 Conclusion -- References -- A Proof of
Lemma 1 -- A Flexible Language for Policies -- 1 Introduction -- 2
Suppl by Example -- 3 Suppl in Detail -- 3.1 Event Handlers -- 3.2
Predicates, Types, and Modes -- 4 Conflict Detection -- 5
Implementation -- 6 Related Work -- 7 Conclusion -- References -- A
Method for Scalable and Precise Bug Finding Using Program Analysis
and Model Checking -- 1 Introduction -- 2 Related Work -- 3
Illustrative Example -- 4 Model-Based Analysis -- 4.1 Specialised
Abstraction -- 4.2 Example Revisited -- 4.3 Function Summaries and
Interprocedural Support -- 5 Implementation -- 6 Experimental Results
-- 6.1 Evaluation of Precision and Recall Against Benchmarks -- 6.2
Evaluation Using OpenJDK -- 6.3 Threats to Validity -- 7 Conclusion
and Future Work -- References -- Model-Checking for Android
Malware Detection -- 1 Introduction -- 2 Android Applications -- 3
Program Model -- 3.1 Pushdown Systems -- 3.2 Modeling Android
Applications as PDSs -- 4 Android (Malicious) Behaviors Specifications.
4.1 The SCTPL Logic -- 4.2 The SLTPL Logic -- 4.3 SLTPL and SCTPL for
Android Applications -- 4.4 Expressing Android (Malicious) Behaviors
in SCTPL and SLTPL -- 5 Model-Checking Android Applications -- 5.1
Annotating the Program with encode Predicates -- 5.2 SCTPL and SLTPL
Model-Checking for Android Applications -- 6 Experiments -- 6.1
Information-Leak Android Applications -- 6.2 Checking the
OtherMalicious Behaviors -- 7 Related Work -- References --
Necessary and Sufficient Preconditions via Eager Abstraction -- 1
Introduction -- 2 Example -- 3 Preliminaries -- 4 EagerAbstraction --
5 Experimental Results -- 6 Related Work -- 7 Conclusion --
References -- A Inference Rules -- Resource Protection Using Atomics
-- 1 Introduction -- 2 Synchronisation in Java -- 3 Ownership
Exchange via Atomics -- 3.1 Basic Rules -- 3.2 Synchronisation
Protocol -- 3.3 Specifications of Atomics -- 3.4 Thread-Modular
Contracts -- 4 Contracts of AtomicInteger -- 4.1 Specification
Language -- 4.2 Predicates and Parameters -- 4.3 Specification -- 4.4
Verification -- 5 Related Work -- 6 Conclusion -- References --
Resource Analysis of Complex Programs with Cost Equations -- 1
Introduction -- 2 Cost Equations -- 3 Control-Flow Refinement of Cost
Equations -- 3.1 Chain Refinement of an SCC -- 3.2 Forward and
Backward Invariants -- 3.3 Terminating Non-termination -- 3.4
Propagating Refinements -- 4 Upper Bound Computation -- 4.1 Cost
Structures -- 4.2 Example of Upper Bound Computation -- 4.3 Cost
Structure of an Equation Application -- 4.4 Cost Structure of a Phase --
4.5 Cost Structure of a Chain -- 5 Solving Cost Structures -- 6 Related
Work and Experiments -- References -- Simple and Efficient
Algorithms for Octagons -- 1 Introduction -- 2 Primer on the Octagon
Domain -- 2.1 The Domain and Its Representation -- 2.2 Closure
Algorithms on DBMs -- 2.3 Integer Closure.
2.4 Incremental Closure -- 3 Improved Incremental Strong Closure
Algorithms -- 4 Simpler Proofs of Strong and Integer Closure -- 4.1
Integer Closure -- 5 Experiments -- 6 Discussion -- 7 Related Work --
8 Conclusions -- References -- Compositional Entailment Checking for
a Fragment of Separation Logic -- 1 Introduction -- 2 Separation Logic
Fragment -- 3 Compositional Entailment Checking -- 3.1 Overview of
the Reduction Procedure -- 3.2 Normalization -- 3.3 Selection of
Spatial Atoms -- 3.4 Soundness and Completeness -- 3.5 Checking
Entailments between a Formula and an Atom -- 4 Representing SL
Graphs as Trees -- 5 Tree Automata Recognizing Tree Encodings of SL

Sommario/riassunto

Graphs -- 6 Completeness and Complexity -- 7 Extensions -- 8
Implementation and Experimental Results -- 9 Related Work -- 10
Conclusion -- References -- Automatic Constrained Rewriting
Induction towards Verifying Procedural Programs -- 1 Introduction -- 2
Preliminaries -- 2.1 Rewriting Constrained Terms -- 3 Transforming
Imperative Programs into LCTRSs -- 4 Rewriting Induction for LCTRSs
-- 4.1 Restrictions -- 4.2 Rewriting Induction -- 4.3 Some Illustrative
Examples -- 5 Lemma Generalization by Dropping Initializations -- 6
Implementation -- 7 Related Work -- 8 Conclusions -- References -- A
ZDD-Based Efficient Higher-Order Model Checking Algorithm -- 1
Introduction -- 2 Preliminaries -- 2.1 Higher-Order Recursion Schemes
and Co-trivial ATA Model Checking -- 2.2 Broadbent and Kobayashi's
Algorithm -- 3 A ZDD-Based Algorithm -- 3.1 ZDD Types -- 3.2
Saturation Algorithm Using ZDD Types -- 3.3 Approximation of
Control-Flow information -- 3.4 Fixed-Parameter Linear Time
Algorithm -- 4 Experiments -- 4.1 Data Sets and Evaluation
Environment -- 4.2 Experimental Results -- 5 Related Work -- 6
Conclusion -- References -- Inferring Grammatical Summaries of String
Values -- 1 Introduction.
2 Preliminaries.

This book constitutes the refereed proceedings of the 12th Asian
Symposium on Programming Languages and Systems, APLAS 2014,
held in Singapore, Singapore in November 2014. The 20 regular papers
presented together with the abstracts of 3 invited talks were carefully
reviewed and selected from 57 submissions. The papers cover a variety
of foundational and practical issues in programming languages and
systems - ranging from foundational to practical issues. The papers
focus on topics such as semantics, logics, foundational theory; design
of languages, type systems and foundational calculi; domain-specific
languages; compilers, interpreters, abstract machines; program
derivation, synthesis and transformation; program analysis, verification,
model-checking; logic, constraint, probabilistic and quantum
programming; software security; concurrency and parallelism; as well
as tools and environments for programming and implementation.

