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These Lecture Notes provide an introduction to the study of those



discrete surfaces which are obtained by randomly gluing polygons
along their sides in a plane. The focus is on the geometry of such
random planar maps (diameter, volume growth, scaling and local
limits...) as well as the behavior of statistical mechanics models on
them (percolation, simple random walks, self-avoiding random
walks...). A “Markovian” approach is adopted to explore these random
discrete surfaces, which is then related to the analogous one-
dimensional random walk processes. This technique, known as "peeling
exploration" in the literature, can be seen as a generalization of the
well-known coding processes for random trees (e.g. breadth first or
depth first search). It is revealed that different types of Markovian
explorations can yield different types of information about a surface.
Based on an École d'Été de Probabilités de Saint-Flour course delivered
by the author in 2019, the book is aimed at PhD students and
researchers interested in graph theory, combinatorial probability and
geometry. Featuring open problems and a wealth of interesting figures,
it is the first book to be published on the theory of random planar
maps.


