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This monograph adopts an operational and functional analytic
approach to the following problem: given a short exact sequence
(group extension) 1 N G H 1 of finite groups, describe the irreducible
representations of G by means of the structure of the group extension.
This problem has attracted many mathematicians, including I. Schur, A.
H. Clifford, and G. Mackey and, more recently, M. Isaacs, B. Huppert, Y.
G. Berkovich & E.M. Zhmud, and J.M.G. Fell & R.S. Doran. The main
topics are, on the one hand, Clifford Theory and the Little Group
Method (of Mackey and Wigner) for induced representations, and, on
the other hand, Kirillov's Orbit Method (for step-2 nilpotent groups of
odd order) which establishes a natural and powerful correspondence
between Lie rings and nilpotent groups. As an application, a detailed
description is given of the representation theory of the alternating
groups, of metacyclic, quaternionic, dihedral groups, and of the (finite)
Heisenberg group. The Little Group Method may be applied if and only
if a suitable unitary 2-cocycle (the Mackey obstruction) is trivial. To
overcome this obstacle, (unitary) projective representations are
introduced and corresponding Mackey and Clifford theories are
developed. The commutant of an induced representation and the
relative Hecke algebra is also examined. Finally, there is a
comprehensive exposition of the theory of projective representations
for finite Abelian groups which is applied to obtain a complete
description of the irreducible representations of finite metabelian



groups of odd order.



