
UNISA9964998594033161. Record Nr.

Titolo Programming language design and implementation / / Torben Æ.
Mogensen

Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
©2022

ISBN 9783031118067
9783031118050

Descrizione fisica 1 online resource (333 pages)

Collana Texts in computer science

Disciplina 001.642

Soggetti Computer programming
Programming languages (Electronic computers)

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Includes index.

Nota di contenuto Intro -- Preface -- Do We Need New Programming Languages? -- Weak
Languages -- General Design Principles -- To the Reader -- Contents
-- List of Figures -- 1 A Brief History of Programming Languages --
1.1 Before Computers: Turing Machines and Lambda Calculus -- 1.2
Programmable Electronic Computers -- 1.3 Early and Influential
Programming Languages -- 1.3.1 Plankalkül -- 1.3.2 FORTRAN --
1.3.3 LISP -- 1.3.4 COBOL -- 1.3.5 ALGOL 60 -- 1.3.6 APL -- 1.3.7
PL/I -- 1.3.8 BASIC -- 1.3.9 Simula -- 1.3.10 Pascal -- 1.3.11 C --
1.3.12 Prolog -- 1.3.13 ISWIM and ML -- 1.4 Further Reading -- 1.5
Exercises -- 2 Implementation Strategies -- 2.1 Compilation and
Interpretation -- 2.2 REPLs and IDEs -- 2.3 Intermediate Code and
Virtual Machines -- 2.4 Hybrid Methods -- 2.5 Cross Compilers,
Reverse Compilers, and Obfuscation -- 2.6 Bootstrapping -- 2.6.1
Notation -- 2.6.2 Compiling Compilers -- 2.6.3 Full Bootstrap -- 2.6.4
Choosing the Language in Which to Write a Compiler -- 2.7 How
Implementation Techniques can Influence Language Design -- 2.8
Further Reading -- 2.9 Exercises -- 3 Syntax -- 3.1 Lexical Elements
-- 3.1.1 Character Sets -- 3.1.2 Case Sensitivity -- 3.1.3 Identifiers --
3.1.4 Whitespace -- 3.1.5 Comments -- 3.1.6 Reserved Symbols --
3.1.7 Separation of Tokens -- 3.1.8 Summary -- 3.2 Grammatical
Elements -- 3.2.1 Line-Based Syntax -- 3.2.2 Multi-line Syntax --

Autore Ægidius Mogensen Torben

Materiale a stampa

Monografia



3.2.3 Syntax that Looks Like a Natural Language -- 3.2.4 Bracketed
Syntax -- 3.2.5 Prefix, Post Fix and Operator-Precedence Syntax --
3.2.6 Context-Free Syntax -- 3.2.7 Stronger Grammar Formalisms --
3.2.8 Other Syntactic Considerations -- 3.2.9 Bracketing Symbols --
3.3 Concerns that Span Both Lexing and Grammar -- 3.3.1 Macros --
3.3.2 Visual Languages -- 3.4 Considerations When Designing Syntax
-- 3.5 Further Reading -- 3.6 Exercises -- 4 Memory Management --
4.1 Introduction.
4.2 Static Allocation -- 4.2.1 Limitations -- 4.3 Stack Allocation -- 4.4
Heap Allocation -- 4.5 Manual Memory Management -- 4.5.1 A Simple
Implementation of malloc() and free() -- 4.5.2 Joining Freed Blocks --
4.5.3 Sorting by Block Size -- 4.5.4 Large Objects -- 4.5.5 Summary of
Manual Memory Management -- 4.6 Automatic Memory Management
-- 4.7 Reference Counting -- 4.8 Tracing Garbage Collectors -- 4.8.1
Mark-Sweep Collection -- 4.8.2 Two-Space Collection -- 4.8.3
Generational and Concurrent Collectors -- 4.9 Summary of Automatic
Memory Management -- 4.10 Memory Management and Language
Design -- 4.11 Further Reading -- 4.12 Exercises -- 5 Scopes,
Functions, and Parameter Passing -- 5.1 Scope Rules -- 5.1.1 Global
Scoping -- 5.1.2 Local Variables Only -- 5.1.3 Block Structure -- 5.1.4
Nested Function Declarations -- 5.1.5 Recursion -- 5.1.6 Macros --
5.1.7 Parameter-Passing Methods -- 5.2 Implementing Functions and
Function Calls -- 5.2.1 Summary of Implementing Function Calls --
5.2.2 C-Style Functions -- 5.2.3 Nested Function Declarations -- 5.3
Functions as Parameters -- 5.4 First-Class Functions -- 5.5 Functional
Programming Languages -- 5.5.1 Impure Functional Languages --
5.5.2 Defunctionalisation -- 5.5.3 Pure Functional Languages -- 5.5.4
Lazy Functional Languages -- 5.5.5 Strictness Analysis -- 5.6
Exceptions -- 5.6.1 Tagged Return -- 5.6.2 Stack Unwinding -- 5.6.3
Using a Handler Stack -- 5.7 Further Reading -- 5.8 Exercises -- 6
Control Structures -- 6.1 Jumps -- 6.2 Structured Control -- 6.2.1
Conditionals -- 6.2.2 Loops -- 6.2.3 Whole-Collection Operations --
6.2.4 Break and Continue -- 6.2.5 Structured Versus Unstructured
Control -- 6.3 Exceptions and Continuations -- 6.3.1 Continuations --
6.4 Function Calls as Control -- 6.5 Multithreading -- 6.5.1 Coroutines
-- 6.5.2 Threads -- 6.5.3 Message Passing -- 6.6 Exercises -- 7
Types.
7.1 Checking Types -- 7.2 Type Conversion -- 7.3 Atomic and
Composite Types -- 7.3.1 Numbers -- 7.3.2 Characters -- 7.3.3
Boolean Values -- 7.3.4 Enumerated Types and Symbols -- 7.3.5
Product Types -- 7.3.6 Records and Structs -- 7.3.7 Collection Types
-- 7.3.8 Union and Sum Types -- 7.3.9 Function Types -- 7.3.10
Recursive Types -- 7.3.11 Named Types and Type Equivalence -- 7.4
Polymorphism -- 7.4.1 Ad hoc Polymorphism -- 7.4.2 Interface
Polymorphism -- 7.4.3 Subtype Polymorphism -- 7.4.4 Parametric
Polymorphism -- 7.4.5 Polymorphic Type Inference -- 7.4.6
Polymorphism in Various Languages -- 7.5 Further Reading -- 7.6
Exercises -- 8 Modularisation -- 8.1 Simple Modules -- 8.1.1 Shared
Modules -- 8.2 Modules with Abstraction -- 8.3 Name Spaces -- 8.3.1
Nested Modules -- 8.4 Modules and Classes -- 8.5 Modules as
Parameters/Values -- 8.6 Further Reading -- 8.7 Exercises -- 9
Language Paradigms -- 9.1 What Is a Language Paradigm? -- 9.1.1
Data Flow -- 9.1.2 Execution Order -- 9.1.3 Structuring -- 9.1.4
Nomenclature -- 9.2 A Closer Look at Some Paradigms -- 9.3 Object-
Oriented Languages -- 9.3.1 Classes and Objects -- 9.3.2 Single
Inheritance -- 9.3.3 Multiple Inheritance -- 9.3.4 Prototype-Based
Languages -- 9.4 Logic Languages -- 9.4.1 Pure Prolog -- 9.4.2 List
Notation -- 9.4.3 Resolution -- 9.4.4 Full Prolog -- 9.4.5 Other Logic



Languages -- 9.5 Further Reading -- 9.6 Exercises -- 10 Domain-
Specific Programming Languages -- 10.1 GPLs Versus DSLs -- 10.2
When Should You (Not) Design a New DSL? -- 10.3 How do You Design
a DSL? -- 10.4 How do You Implement a DSL? -- 10.4.1
Implementation as Embedded Language -- 10.4.2 Implementation by
Preprocessor -- 10.4.3 Implementation as Compiler/Interpreter
Modification -- 10.4.4 Implementation as Stand-alone Language --
10.5 Examples of DSLs -- 10.5.1 Scratch -- 10.5.2 TeX and LaTeX --
10.5.3 Graphviz.
10.5.4 OpenSCAD -- 10.5.5 Troll -- 10.5.6 CRL -- 10.5.7 Futhark --
10.6 Further Reading -- 10.7 Exercises -- 11 Specifying the Semantics
of a Programming Language -- 11.1 Informal Specification -- 11.2
Specification by Reference Implementation -- 11.3 Formal Specification
-- 11.3.1 Notation for Logic Rules -- 11.3.2 Environments -- 11.3.3
Judgements -- 11.3.4 Semantic Rules -- 11.4 Type Systems -- 11.5
Operational Semantics -- 11.5.1 Operational Semantics for a Functional
Language -- 11.5.2 Relating Type Systems and Operational Semantics
-- 11.5.3 Operational Semantics for an Imperative Language -- 11.5.4
Unstructured Control -- 11.5.5 Nontermination and Nondeterminism
-- 11.6 Static Semantics -- 11.7 Languages That Have Formal
Semantics -- 11.8 Further Reading -- 11.9 Exercises -- 12 Exploring
the Limits -- 12.1 Limits of Computation -- 12.2 Limits on Program
Features -- 12.3 Languages at the Limit -- 12.3.1 Reversible
Programming Languages -- 12.3.2 Quantum Programming Languages
-- 12.4 Further Reading -- 12.5 Exercises -- A Index -- Index.


