1. Record Nr. UNISA996499859403316

Autore AEgidius Mogensen Torben

Titolo Programming language design and implementation / / Torben Z.
Mogensen

Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
©2022

ISBN 9783031118067
9783031118050

Descrizione fisica 1 online resource (333 pages)

Collana Texts in computer science

Disciplina 001.642

Soggetti Computer programming

Programming languages (Electronic computers)

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Note generali Includes index.

Nota di contenuto Intro -- Preface -- Do We Need New Programming Languages? -- Weak

Languages -- General Design Principles -- To the Reader -- Contents
-- List of Figures -- 1 A Brief History of Programming Languages --
1.1 Before Computers: Turing Machines and Lambda Calculus -- 1.2
Programmable Electronic Computers -- 1.3 Early and Influential
Programming Languages -- 1.3.1 Plankalkil -- 1.3.2 FORTRAN --
1.3.3LISP --1.3.4 COBOL -- 1.3.5 ALGOL 60 -- 1.3.6 APL -- 1.3.7
PL/I -- 1.3.8 BASIC -- 1.3.9 Simula -- 1.3.10 Pascal -- 1.3.11 C --
1.3.12 Prolog -- 1.3.13 ISWIM and ML -- 1.4 Further Reading -- 1.5
Exercises -- 2 Implementation Strategies -- 2.1 Compilation and
Interpretation -- 2.2 REPLs and IDEs -- 2.3 Intermediate Code and
Virtual Machines -- 2.4 Hybrid Methods -- 2.5 Cross Compilers,
Reverse Compilers, and Obfuscation -- 2.6 Bootstrapping -- 2.6.1
Notation -- 2.6.2 Compiling Compilers -- 2.6.3 Full Bootstrap -- 2.6.4
Choosing the Language in Which to Write a Compiler -- 2.7 How
Implementation Techniques can Influence Language Design -- 2.8
Further Reading -- 2.9 Exercises -- 3 Syntax -- 3.1 Lexical Elements
-- 3.1.1 Character Sets -- 3.1.2 Case Sensitivity -- 3.1.3 Identifiers --
3.1.4 Whitespace -- 3.1.5 Comments -- 3.1.6 Reserved Symbols --
3.1.7 Separation of Tokens -- 3.1.8 Summary -- 3.2 Grammatical
Elements -- 3.2.1 Line-Based Syntax -- 3.2.2 Multi-line Syntax --



3.2.3 Syntax that Looks Like a Natural Language -- 3.2.4 Bracketed
Syntax -- 3.2.5 Prefix, Post Fix and Operator-Precedence Syntax --
3.2.6 Context-Free Syntax -- 3.2.7 Stronger Grammar Formalisms --
3.2.8 Other Syntactic Considerations -- 3.2.9 Bracketing Symbols --
3.3 Concerns that Span Both Lexing and Grammar -- 3.3.1 Macros --
3.3.2 Visual Languages -- 3.4 Considerations When Designing Syntax
-- 3.5 Further Reading -- 3.6 Exercises -- 4 Memory Management --
4.1 Introduction.

4.2 Static Allocation -- 4.2.1 Limitations -- 4.3 Stack Allocation -- 4.4
Heap Allocation -- 4.5 Manual Memory Management -- 4.5.1 A Simple
Implementation of malloc() and free() -- 4.5.2 Joining Freed Blocks --
4.5.3 Sorting by Block Size -- 4.5.4 Large Objects -- 4.5.5 Summary of
Manual Memory Management -- 4.6 Automatic Memory Management
-- 4.7 Reference Counting -- 4.8 Tracing Garbage Collectors -- 4.8.1
Mark-Sweep Collection -- 4.8.2 Two-Space Collection -- 4.8.3
Generational and Concurrent Collectors -- 4.9 Summary of Automatic
Memory Management -- 4.10 Memory Management and Language
Design -- 4.11 Further Reading -- 4.12 Exercises -- 5 Scopes,
Functions, and Parameter Passing -- 5.1 Scope Rules -- 5.1.1 Global
Scoping -- 5.1.2 Local Variables Only -- 5.1.3 Block Structure -- 5.1.4
Nested Function Declarations -- 5.1.5 Recursion -- 5.1.6 Macros --
5.1.7 Parameter-Passing Methods -- 5.2 Implementing Functions and
Function Calls -- 5.2.1 Summary of Implementing Function Calls --
5.2.2 C-Style Functions -- 5.2.3 Nested Function Declarations -- 5.3
Functions as Parameters -- 5.4 First-Class Functions -- 5.5 Functional
Programming Languages -- 5.5.1 Impure Functional Languages --
5.5.2 Defunctionalisation -- 5.5.3 Pure Functional Languages -- 5.5.4
Lazy Functional Languages -- 5.5.5 Strictness Analysis -- 5.6
Exceptions -- 5.6.1 Tagged Return -- 5.6.2 Stack Unwinding -- 5.6.3
Using a Handler Stack -- 5.7 Further Reading -- 5.8 Exercises -- 6
Control Structures -- 6.1 Jumps -- 6.2 Structured Control -- 6.2.1
Conditionals -- 6.2.2 Loops -- 6.2.3 Whole-Collection Operations --
6.2.4 Break and Continue -- 6.2.5 Structured Versus Unstructured
Control -- 6.3 Exceptions and Continuations -- 6.3.1 Continuations --
6.4 Function Calls as Control -- 6.5 Multithreading -- 6.5.1 Coroutines
-- 6.5.2 Threads -- 6.5.3 Message Passing -- 6.6 Exercises -- 7
Types.

7.1 Checking Types -- 7.2 Type Conversion -- 7.3 Atomic and
Composite Types -- 7.3.1 Numbers -- 7.3.2 Characters -- 7.3.3
Boolean Values -- 7.3.4 Enumerated Types and Symbols -- 7.3.5
Product Types -- 7.3.6 Records and Structs -- 7.3.7 Collection Types
-- 7.3.8 Union and Sum Types -- 7.3.9 Function Types -- 7.3.10
Recursive Types -- 7.3.11 Named Types and Type Equivalence -- 7.4
Polymorphism -- 7.4.1 Ad hoc Polymorphism -- 7.4.2 Interface
Polymorphism -- 7.4.3 Subtype Polymorphism -- 7.4.4 Parametric
Polymorphism -- 7.4.5 Polymorphic Type Inference -- 7.4.6
Polymorphism in Various Languages -- 7.5 Further Reading -- 7.6
Exercises -- 8 Modularisation -- 8.1 Simple Modules -- 8.1.1 Shared
Modules -- 8.2 Modules with Abstraction -- 8.3 Name Spaces -- 8.3.1
Nested Modules -- 8.4 Modules and Classes -- 8.5 Modules as
Parameters/Values -- 8.6 Further Reading -- 8.7 Exercises -- 9
Language Paradigms -- 9.1 What Is a Language Paradigm? -- 9.1.1
Data Flow -- 9.1.2 Execution Order -- 9.1.3 Structuring -- 9.1.4
Nomenclature -- 9.2 A Closer Look at Some Paradigms -- 9.3 Object-
Oriented Languages -- 9.3.1 Classes and Objects -- 9.3.2 Single
Inheritance -- 9.3.3 Multiple Inheritance -- 9.3.4 Prototype-Based
Languages -- 9.4 Logic Languages -- 9.4.1 Pure Prolog -- 9.4.2 List
Notation -- 9.4.3 Resolution -- 9.4.4 Full Prolog -- 9.4.5 Other Logic



Languages -- 9.5 Further Reading -- 9.6 Exercises -- 10 Domain-
Specific Programming Languages -- 10.1 GPLs Versus DSLs -- 10.2
When Should You (Not) Design a New DSL? -- 10.3 How do You Design
a DSL? -- 10.4 How do You Implement a DSL? -- 10.4.1
Implementation as Embedded Language -- 10.4.2 Implementation by
Preprocessor -- 10.4.3 Implementation as Compiler/Interpreter
Modification -- 10.4.4 Implementation as Stand-alone Language --

10.5 Examples of DSLs -- 10.5.1 Scratch -- 10.5.2 TeX and LaTeX --
10.5.3 Graphviz.

10.5.4 OpenSCAD -- 10.5.5 Troll -- 10.5.6 CRL -- 10.5.7 Futhark --
10.6 Further Reading -- 10.7 Exercises -- 11 Specifying the Semantics
of a Programming Language -- 11.1 Informal Specification -- 11.2
Specification by Reference Implementation -- 11.3 Formal Specification
-- 11.3.1 Notation for Logic Rules -- 11.3.2 Environments -- 11.3.3
Judgements -- 11.3.4 Semantic Rules -- 11.4 Type Systems -- 11.5
Operational Semantics -- 11.5.1 Operational Semantics for a Functional
Language -- 11.5.2 Relating Type Systems and Operational Semantics
-- 11.5.3 Operational Semantics for an Imperative Language -- 11.5.4
Unstructured Control -- 11.5.5 Nontermination and Nondeterminism

-- 11.6 Static Semantics -- 11.7 Languages That Have Formal
Semantics -- 11.8 Further Reading -- 11.9 Exercises -- 12 Exploring
the Limits -- 12.1 Limits of Computation -- 12.2 Limits on Program
Features -- 12.3 Languages at the Limit -- 12.3.1 Reversible
Programming Languages -- 12.3.2 Quantum Programming Languages
-- 12.4 Further Reading -- 12.5 Exercises -- A Index -- Index.



