1. Record Nr.

Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica
Collana

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia

Nota di contenuto

UNISA996465415903316

Adaptive Hypermedia and Adaptive Web-Based Systems [[electronic
resource] ] : International Conference, AH 2000, Trento, Italy, August
28-30, 2000 Proceedings / / edited by Peter Brusilovsky, Oliviero
Stock, Carlo Strapparava

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer,
, 2000

3-540-44595-1

[1st ed. 2000.]

1 online resource (XIIl, 424 p.)

Lecture Notes in Computer Science, , 0302-9743 ; ; 1892

006.7/776

Computers

Computer science

Computer communication systems

Multimedia information systems

Application software

User interfaces (Computer systems)

Theory of Computation

Popular Computer Science

Computer Communication Networks
Multimedia Information Systems

Information Systems Applications (incl. Internet)
User Interfaces and Human Computer Interaction

Inglese

Materiale a stampa

Monografia

Bibliographic Level Mode of Issuance: Monograph

Includes bibliographical references at the end of each chapters and
index.

Invited Papers -- Enhancing Adaptive Hypermedia Presentation Systems
1 by Lifelike Synthetic Characters -- Full Papers -- Dynamic Generation
of Adaptive Web Catalogs -- An Intelligent Tutor for a Web-Based

Chess Course -- Adapting Web-Based Information to the Needs of
Patients with Cancer -- Group User Models for Personalized Hyperlink
Recommendations -- Adaptive Navigation Support and Adaptive
Collaboration Support in WebDL -- Case-Based User Profiling for
Content Personalisation -- Providing Tailored (Context-Aware)



Information to City Visitors -- Adding Adaptive Features to Virtual
Reality Interfaces for E-Commerce -- WAPing the Web: Content
Personalisation for WAP-Enabled Devices -- Extendible Adaptive
Hypermedia Courseware: Integrating Different Courses and Web
Material -- Logically Optimal Curriculum Sequences for Adaptive
Hypermedia Systems -- Towards Zero-Input Personalization: Referrer-
Based Page Prediction -- Livelnfo: Adapting Web Experience by
Customization and Annotation -- Adaptivity for Conceptual and
Narrative Flow in Hyperbooks: The MetaLinks System -- The
MacroNode Approach: Mediating Between Adaptive and Dynamic
Hypermedia -- ECHOES: An Immersive Training Experience -- A
Connectionist Approach for Supporting Personalized Learning in a
Web-Based Learning Environment -- Adaptive Hypertext Design
Environments: Putting Principles into Practice -- ECSAIWeb: A Web-
Based Authoring System to Create Adaptive Learning Systems --
Adaptive Content in an Online Lecture System -- A Web-Based Socratic
Tutor for Trees Recognition -- Adaptation Control in Adaptive
Hypermedia Systems -- Short Papers -- An Agent-Based Approach to
Adaptive Hypermedia Using a Link Service -- Adaptive Testing by
Test++ -- What Does the User Want to Know About Web Resources? A
User Model for Metadata -- Web Information Retrieval for Designing
Distance Hypermedia Courses -- Formative Evaluation of Adaptive
CALLware: A Case Study -- How Adaptivity Affects the Development of
TANGOW Web-Based Courses -- An Adaptive Web Content Delivery
System -- Knowledge Computing Method for Enhancing the
Effectiveness of a WWW Distance Education System -- Interface
Adaptation to Style of User-Computer Interaction -- Adaptation and
Generation in a Web-Based Lisp Tutor -- Collaborative Maintenance in
ULYSSES -- An Adaptive Open Hypermedia System on the Web --
Towards an Adaptive Learners’ Dictionary -- Concept Filtering and
Spatial Filtering in an Adaptive Information System -- Analysing Web
Search Logs to Determine Session Boundaries for User-Oriented
Learning -- Learning User Profiles in NAUTILUS -- Lexical Chaining for
Web-Based Retrieval of Breaking News -- Designing for Social
Navigation of Food Recipes -- A Study Comparing the Use of Shaded
Text and Adaptive Navigational Support in Adaptive Hypermedia --
Layered Evaluation of Adaptive Applications and Services -- Exploratory
Activity Support Based on a Semantic Feature Map -- Adaptivity in
AHMED -- An Adaptive Document Generation Based on Matrix of
Contents -- Logical Dimensions for the Information Provided by a
Virtual Guide -- Automated Collaborative Filtering Applications for
Online Recruitment Services -- ConTexts: Adaptable Hypermedia --
Coherence in Modularly Composed Adaptive Learning Documents --
ACE-Adaptive Courseware Environment -- The Adaptive University
Calendar -- Sense-Based User Modelling for Web Sites -- Generating
Personal Travel Guides from Discourse Plans -- Doctoral Consortium
Papers -- Distributed Systems for Group Adaptivity on the Web --
Open Multimedia Environment to Retrieve and Organise Documents: An
Adaptive Web-Based IR System in the Field of Textile and Clothing
Industry -- Researching Adaptive Instruction -- A Modular Approach

for User Modelling.

Sommario/riassunto This book constitutes the refereed proceedings of the first International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
AH 2000, held in Trento, Italy, in August 2000. The 22 revised full
papers presented together with 35 short papers were carefully reviewed
and selected from 55 submissions. Among the topics covered are
hypertext, user modeling, machine learning, natural language
generation, information retrieval, intelligent tutoring systems, cognitive



2. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Nota di bibliografia
Nota di contenuto

science, web-based education, etc.

UNINA9910743250303321
Taraate Vaibbhav

Digital logic design using Verilog : coding and RTL synthesis / /
Vaibbhav Taraate

Singapore : , : Springer, , [2022]
©2022

981-16-3199-9
981-16-3198-0

[2nd ed.]
1 online resource (607 pages)

371.320973

Logic design - Data processing
Verilog (Computer hardware description language)

Inglese
Materiale a stampa
Monografia

Includes bibliographical references and index.

Intro -- Preface -- Acknowledgements -- Contents -- About the
Author -- 1 Introduction -- 1.1 Evolution of Logic Design -- 1.2
System and Logic Design Abstractions -- 1.2.1 Architecture Design --
1.2.2 Micro-architecture Design -- 1.2.3 RTL Design and Synthesis --
1.2.4 Switch Level Design -- 1.3 Integrated Circuit Design and
Methodologies -- 1.3.1 RTL Design -- 1.3.2 Functional Verification --
1.3.3 Synthesis -- 1.3.4 Physical Design -- 1.4 Verilog as Hardware
Description Language -- 1.5 Verilog Design Description -- 1.5.1
Structural Design -- 1.5.2 Behavior Design -- 1.5.3 Synthesizable
Design -- 1.6 Few Important Verilog Terminologies -- 1.7 Exercises --
1.8 Summary -- 2 Concept of Concurrency and Verilog Operators --
2.1 Use of Continuous Assignment to Model Design -- 2.2 Use of
always Procedural Block to Implement Combinational Design -- 2.3
Concept of Concurrency -- 2.4 Verilog Arithmetic Operators -- 2.5
Verilog Logical Operators -- 2.6 Verilog Equality and Inequality
Operators -- 2.7 Verilog Sign Operators -- 2.8 Verilog Bitwise
Operators -- 2.9 Verilog Relational Operators -- 2.10 Verilog



Concatenation and Replication Operators -- 2.11 Verilog Reduction
Operators -- 2.12 Verilog Shift Operators -- 2.13 Exercises -- 2.14
Summary -- 3 Verilog Constructs and Combinational Design-I -- 3.1
The Role of Constructs -- 3.2 Logic Gates and Synthesizable RTL --
3.2.1 NOT or Invert Logic -- 3.2.2 OR Logic -- 3.2.3 NOR Logic --
3.2.4 AND Logic -- 3.2.5 NAND Logic -- 3.2.6 Two Input XOR Logic --
3.2.7 Two Input XNOR Logic -- 3.3 Tristate Logic -- 3.4 Arithmetic
Circuits -- 3.4.1 Adder -- 3.4.1.1 Half Adder -- 3.4.1.2 Full Adder --
3.4.2 Subtractor -- 3.4.2.1 Half Subtractor -- 3.4.2.2 Full Subtractor --
3.5 Exercises -- 3.6 Summary -- 4 Verilog Constructs and
Combinational Design-Il -- 4.1 Procedural Block always @*.

4.2 Multi-bit Adders and Subtractors -- 4.2.1 Four-Bit Full Adder --
4.2.2 4-Bit Full Subtractor -- 4.2.3 4-Bit Adder and Subtractor -- 4.3
Optimization of Resources -- 4.3.1 Optimization Using Only Adders --
4.3.2 Optimization by Tweaking the Logic to Have Better Data and
Control Path -- 4.4 Procedural Block initial -- 4.5 Simulation Concepts:
Basic Testbench -- 4.6 Comparators and Parity Detectors -- 4.6.1
Binary Comparators -- 4.6.2 Parity Detector -- 4.7 Code Converters --
4.7.1 Binary to Gray Code Converter -- 4.7.2 Gray to Binary Code
Converter -- 4.8 Let Us Think About the Design from Specifications --
4.9 Exercises -- 4.10 Summary -- 5 Multiplexers as Universal Logic --
5.1 Multiplexers -- 5.2 Multiplexer as Universal logic -- 5.2.1 2:1 MUX
-- 5.3 The if...else Versus case Construct -- 5.4 The 4:1 MUX Using if...
else -- 5.5 The 4:1 MUX Using case Construct -- 5.6 The 4:1 Mux
Using 2:1 MUX -- 5.7 Let Us Design Combinational Logic Using
Multiplexers -- 5.8 Optimization Strategies Using RTL Tweaks -- 5.9
Exercises -- 5.10 Summary -- 6 Decoders and Encoders -- 6.1
Decoders -- 6.1.1 1 Line to 2 Decoder Using case construct -- 6.1.2 1
Line to 2 Decoder Having Enable Using case -- 6.1.3 2 Line to 4
Decoder with Enable Using case -- 6.1.4 2 Line to 4 Decoder with
Active Low Enable Using case -- 6.1.5 2 to 4 Decoder Using Continuous
Assignments -- 6.1.6 Decoder Using Shift Operator -- 6.1.7 Testbench
of 2:4 Decoder -- 6.1.8 4 Line to 16 Decoder Using 2:4 Decoder -- 6.2
Testbench for 4:16 Decoder -- 6.3 Encoders -- 6.3.1 Priority Encoders
-- 6.4 Testbench of 4:2 Priority encoder -- 6.5 Exercises -- 6.6
Summary -- 7 Event Queue and Design Guidelines -- 7.1 Verilog
Stratified Event Queue -- 7.2 Verilog Blocking Assignments -- 7.3
Incomplete Sensitivity List -- 7.4 Continuous Versus Procedural
Assignments -- 7.5 Combinational Loops in Design.

7.6 Unintentional Latches in the Design -- 7.7 Use of Blocking
Assignments -- 7.8 Use of if...else Versus case constructs -- 7.9
Nested Multiplexer or Priority Logic -- 7.10 Parallel Logic or Decoding
Logic -- 7.11 Priority Encoding Structure -- 7.12 Missing

default Condition in case construct -- 7.13 Nested if...else with Missing
else Condition -- 7.14 Logical Equality Versus Case Equality -- 7.14.1
Logical Equality and Logical Inequality Operators -- 7.14.2 Case
Equality and Case Inequality Operators -- 7.15 Multiple Driver
Assignments -- 7.16 Exercises -- 7.17 Summary -- 8 Basics of
Sequential Design Using Verilog -- 8.1 Sequential Logic -- 8.1.1
Positive-Level Sensitive D Latch -- 8.1.2 Negative-Level Sensitive D
Latch -- 8.2 Flip-Flop -- 8.2.1 Positive Edge-Triggered D Flip-Flop --
8.2.2 Negative Edge-Triggered D Flip-Flop -- 8.2.3 Synchronous and
Asynchronous Reset -- 8.2.3.1 D Flip-Flop Having Asynchronous Reset
-- 8.2.4 D Flip-Flop Having Synchronous Reset -- 8.2.5 Flip-Flop
Having Synchronous Load Enable and Asynchronous Reset -- 8.2.6
Flip-Flop with Synchronous Load and Synchronous Reset -- 8.3
Exercises -- 8.4 Summary -- 9 Synchronous Counter Design Using
Synthesizable Constructs -- 9.1 Synchronous Counters -- 9.1.1 Three-



Bit Up Counter -- 9.1.2 Three-Bit Down Counter -- 9.1.3 Three-Bit
Up-Down Counter -- 9.2 Gray Counters -- 9.2.1 Gray and Binary
Counter -- 9.2.2 Ring Counters -- 9.2.3 Johnson Counters -- 9.3 BCD
Up-Down Counter -- 9.4 Exercises -- 9.5 Summary -- 10 RTL Design
of Registers and Memories -- 10.1 Parallel Input and Parallel Output
(PIPO) Register -- 10.2 Shift Register -- 10.3 Right and Left Shift
Operation -- 10.4 Timing and Performance Evaluation -- 10.5
Asynchronous Counter Design -- 10.5.1 Ripple Counters -- 10.6 RTL
Design of Memories -- 10.7 Parameterized Read-Write Memory -- 10.8
Exercises -- 10.9 Summary.

11 Sequential Circuit Design Guidelines -- 11.1 What Happens If
Blocking Assignments Are Used to Code Sequential Logic? -- 11.1.1
Blocking Assignments and Multiple always Blocks -- 11.1.2 Multiple
Blocking Assignments Used in the Single always Block -- 11.1.3
Example Blocking Assignment -- 11.2 Non-blocking Assignments --
11.2.1 Example Non-blocking Assignments -- 11.2.2 Example Non-
blocking Assignment -- 11.2.3 Example Using Non-blocking
Assignments -- 11.3 Latch Versus Flip-Flop -- 11.3.1 D Flip-Flop --
11.3.2 Latch -- 11.4 Use of Synchronous Versus Asynchronous Reset
-- 11.4.1 D Flip-Flop Having Asynchronous Reset -- 11.4.2
Synchronous Reset D Flip-Flop -- 11.5 Use of if...else Versus case
constructs -- 11.6 Internally Generated Clocks -- 11.7 Guidelines for
Modeling Synchronous Designs -- 11.8 Multiple Clocks in the Same
module -- 11.9 Multi-phase Clocks in the Design -- 11.10 Guidelines
for Modeling Asynchronous Designs -- 11.11 Exercises -- 11.12
Summary -- 12 RTL Design Strategies for Complex Designs -- 12.1
ALU Design -- 12.1.1 Logic Unit Design -- 12.1.1.1 Logic Unit to Infer
Parallel Logic -- 12.1.1.2 Logic Unit Having Registered Inputs and
Outputs -- 12.1.2 Arithmetic Unit -- 12.1.3 Arithmetic and Logic Unit

-- 12.2 Functions and Tasks -- 12.2.1 Counting Number of 1's from

the Given String -- 12.2.2 RTL Design Using function to Count Number
of 1'S -- 12.3 Synthesis Result of RTL Using function -- 12.4 Synthesis
Result of RTL Using task -- 12.5 Exercises -- 12.6 Summary -- 13 RTL
Tweaks and Performance Improvement Techniques -- 13.1 Arithmetic
Resource Sharing -- 13.1.1 RTL Design Using Resource Sharing to Have
Area Optimization -- 13.2 Gated Clocks and Dynamic Power Reduction
-- 13.3 Use of Pipelining in Design -- 13.3.1 Design Without Pipelining
-- 13.3.2 Speed Improvement Using Register Balancing or Pipelining.
13.4 Counter Design and Duty Cycle Control -- 13.5 MOD-3 Counter
RTL Design to Have 50% Duty Cycle -- 13.6 Exercise -- 13.7 Summary
-- 14 Finite State Machines Using Verilog -- 14.1 Moore Versus Mealy
Machines -- 14.1.1 Level to Pulse Converter -- 14.2 FSM Encoding
Styles -- 14.2.1 Binary Encoding -- 14.2.1.1 Two-Bit Binary Counter
FSM -- 14.2.2 Gray Encoding -- 14.2.2.1 Two-Bit Gray Counter FSM --
14.3 One-Hot Encoding -- 14.4 Sequence Detectors Using FSMs --
14.4.1 Mealy Sequence Detector Using Two always Procedural Blocks --
14.4.2 Mealy Machine: Sequence Detector to Detect 101 Overlapping
Sequence -- 14.5 Improving the Design Performance for FSMs -- 14.6
Exercises -- 14.7 Summary -- 15 Non-synthesizable Verilog
Constructs and Testbenches -- 15.1 Intra-delay and Inter-delay
Assignments -- 15.1.1 Simulation for Blocking Assignments -- 15.1.2
Simulation of Non-blocking Assignments -- 15.2 The always and initial
Procedural Block -- 15.2.1 Blocking Assignments with Inter-
assignment Delays -- 15.2.2 Blocking Assignments with Intra-
assignment Delays -- 15.2.3 Non-blocking Assignments with Inter-
assignment Delays -- 15.2.4 Non-blocking Assignments with Intra-
assignment Delays -- 15.3 Role of Testbenches -- 15.4 Multiple
Assignments Within the begin-end -- 15.5 Multiple Assignments



Within the fork-join -- 15.6 Display Tasks -- 15.7 Exercises -- 15.8
Summary -- 16 FPGA Architecture and Design Flow -- 16.1
Introduction to PLD -- 16.2 FPGA as Programmable ASIC -- 16.2.1
SRAM Based FPGA -- 16.2.2 Flash Based FPGA -- 16.2.3 Antifuse
FPGAS -- 16.2.4 Important FPGA Blocks -- 16.3 FPGA Design Flow --
16.3.1 Design Entry -- 16.3.2 Design Simulation and Synthesis --
16.3.3 Design Implementation -- 16.3.4 Device Programming -- 16.4
Logic Realization Using FPGA -- 16.4.1 Configurable Logic Block --
16.4.2 Input Output Block (I0OB) -- 16.4.3 Block RAM.

16.4.4 Digital Clock Manager (DCM) Block.



