1. Record Nr.

Titolo

Pubbl/distr/stampa

ISBN

Descrizione fisica
Collana

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

UNISA996464547403316
Languages and compilers for parallel computing : 34th international

workshop, LCPC 2021, Newark, DE, USA, October 13-14, 2021 : revised

selected papers / / Xiaoming Li and Sunita Chandrasekaran (editors)
Cham, Switzerland : , : Springer, , [2022]
©2022

3-030-99372-8

1 online resource (159 pages)
Lecture notes in computer science ; ; Volume 13181

004.35

Parallel processing (Electronic computers)
Parallel programming (Computer science)
Compilers (Computer programs)

Inglese

Materiale a stampa
Monografia
Includes index.

Intro -- Preface -- Organization -- Contents -- Compiler -- Locality-
Based Optimizations in the Chapel Compiler -- 1 Introduction -- 2
Chapel Background -- 2.1 Distributed Arrays -- 2.2 Forall Loops -- 3
Compiler Analysis and Optimizations -- 3.1 Automatic Local Access --
3.2 Automatic Aggregation -- 4 Results -- 5 Future Work -- 6 Related
Work -- 7 Conclusion -- References -- iCetus: A Semi-automatic
Parallel Programming Assistant -- 1 Introduction -- 2 Rationale for the
iCetus Interactive Parallelizer and Tool Features -- 2.1 Automatic
Parallelization in Cetus -- 2.2 The Opportunity of Interactive
Parallelization -- 2.3 iCetus Features -- 2.4 Limitations of the Current
Version of iCetus -- 3 iCetus System Overview -- 4 Evaluation -- 4.1
Importance and Usefulness of Existing iCetus Features -- 4.2
Importance and Usefulness of our Proposed iCetus Features -- 4.3
Requested Features for iCetus -- 5 Related Work -- 6 Conclusion --
References -- Hybrid Register Allocation with Spill Cost and Pattern
Guided Optimization -- 1 Introduction -- 2 Background and
Challenges -- 3 Preliminary Analysis -- 4 Design and Implementation
-- 4.1 Code Pattern Recognizer -- 4.2 Spill Cost Tracking Mechanism
-- 4.3 Putting it all Together: Cost-Guided Allocation Optimizer -- 5
Methodology -- 6 Evaluation Result -- 6.1 Benchmark Performance --



6.2 Sensitivity Study -- 6.3 Compilation Overhead -- 7 Related Work --
8 Conclusion and Future Work -- References -- Performance Evaluation
of OSCAR Multi-target Automatic Parallelizing Compiler on Intel, AMD,
Arm and RISC-V Multicores -- 1 Introduction -- 2 The OSCAR
Automatic Parallelizing Compiler -- 3 Investigated Multicore
Architectures -- 4 Benchmark Programs -- 5 Compile Flow -- 6
Performance of OSCAR Compiler-Parallelized Programs -- 6.1 OSCAR
Compiled Benchmark Performance on Intel x86.

6.2 OSCAR Compiled Benchmark Performance on AMD X86 -- 6.3
OSCAR Compiled Benchmark Performance on Arm -- 6.4 OSCAR
Compiled Benchmark Performance on RISC-V -- 7 Conclusion --
References -- Accelerators -- LC-MEMENTO: A Memory Model for
Accelerated Architectures -- 1 Introduction -- 2 Background -- 2.1
Memory Consistency Models -- 2.2 The Abstract Runtime System: ARTS
-- 2.3 NVIDIA CUDA Programming and Execution Environment -- 3 LC-
MEMENTO Design and Implementation -- 3.1 Asynchronous Runtime
Scheduler for Accelerators -- 3.2 Memory Models for Accelerators -- 4
Evaluation -- 4.1 STREAM Benchmark -- 4.2 Random Access
Benchmark -- 4.3 Breadth-First Search -- 5 Related Work -- 6
Conclusions and Future Work -- References -- The ORKA-HPC
Compiler-Practical OpenMP for FPGAs -- 1 Motivation -- 2 Related
Work -- 3 The ORKA-HPC OpenMP-to-FPGA Compiler -- 3.1 OpenMP
Lowering -- 3.2 FPGA Path -- 3.3 ORKA-HPC LLP-Backend -- 3.4 Host
Path -- 4 Deployment -- 5 Evaluation -- 6 Contributions and Future
Work -- References -- Graphs and Kernels -- Optimizing Sparse Matrix
Multiplications for Graph Neural Networks -- 1 Introduction -- 2
Background -- 2.1 Graph Neural Networks -- 2.2 Sparse Matrix
Storage Formats -- 3 Motivation -- 3.1 Setup -- 3.2 Results -- 4 Our
Approach -- 4.1 Predictive Modeling -- 4.2 Problem Modeling -- 4.3
Training Data Generation -- 4.4 Feature Engineering -- 4.5 Training

the Model -- 4.6 Using the Model -- 5 Experimental Setup -- 5.1
Software and Hardware -- 5.2 Evaluation Methodology -- 6
Experimental Results -- 6.1 Overall Results -- 6.2 Compare to Prior
Methods -- 6.3 Compare to Oracle Performance -- 6.4 Model Analysis
-- 6.5 Discussion -- 7 Related Work -- 8 Conclusions -- References --

A Hybrid Synchronization Mechanism for Parallel Sparse Triangular
Solve -- 1 Introduction -- 2 Motivation and Related Work -- 3
Preliminaries.

3.1 Sparse Matrix and Serial SpTS -- 3.2 Parallel SpTS -- 4 Our
Approach -- 4.1 Overview -- 4.2 no-busy-wait -- 4.3 busy-wait -- 5
Evaluation -- 5.1 Experimental Setup -- 5.2 SpTS Performance
Comparison -- 6 Conclusion and Future Work -- References --
Techniques for Managing Polyhedral Dataflow Graphs -- 1 Introduction
-- 2 Background -- 2.1 GeoAc -- 2.2 SPF and the Computation API --
2.3 Polyhedral Dataflow Graphs -- 3 Case Study: Expressing GeoAc and
Examining Polyhedral Dataflow Graphs -- 3.1 Approximate Static Single
Assignment -- 3.2 Producer Consumer Reductions -- 3.3 Graph
Components -- 3.4 Data Dependent Control Flow -- 3.5 Dead Code
Elimination -- 3.6 Subgraphs -- 3.7 Constant Size Arrays -- 3.8
Debugging Information -- 4 Related Work -- 5 Conclusion --
References -- Author Index.



