

1. Record Nr.	UNISA996418446903316
Autore	Shibuya Ryosuke
Titolo	Dynamical Characteristics of Inertia-Gravity Waves in the Antarctic Mesosphere [[electronic resource]] : Analyses Combining High-Resolution Observations and Modeling // by Ryosuke Shibuya
Pubbl/distr/stampa	Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
ISBN	981-13-9085-1
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (XVI, 92 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	531
Soggetti	Geophysics Computer simulation Atmospheric sciences Fluids Geophysics and Environmental Physics Geophysics/Geodesy Simulation and Modeling Atmospheric Sciences Fluid- and Aerodynamics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral thesis accepted by The University of Tokyo, Tokyo, Japan."
Nota di contenuto	General Introduction -- A new transformation method for a quasi-uniform and fine grid system in a circular region using the spring dynamics -- Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6°E, 69.0 °S) -- Gravity wave characteristics in the winter Antarctic mesosphere by a long-term numerical simulation using a non-hydrostatic general circulation model -- Summary and concluding remarks -- Acknowledgements. .
Sommario/riassunto	This book examines the origins and dynamical characteristics of atmospheric inertia-gravity waves in the Antarctic mesosphere. Gravity waves are relatively small-scale atmospheric waves with a restoring force of buoyancy that can transport momentum upward from the troposphere to the middle atmosphere. In previous studies, the

dynamical characteristics of mesospheric gravity waves have not been fully examined using numerical simulations, since performing a numerical simulation with a high resolution and a high model-top requires considerable computational power. However, recent advances in computational capabilities have allowed us to perform numerical simulations using atmospheric general circulation models, which cover the troposphere to the mesosphere with a sufficiently fine horizontal resolution to resolve small-scale gravity waves. The book first describes the simulation of mesospheric gravity waves using a high-resolution non-hydrostatic atmospheric model with a high model top. The accuracy of the numerical results was confirmed by the first Mesosphere-Stratosphere-Troposphere/Incoherent Scattering (MST/IS) radar observation in the Antarctic. It also depicts the origins and propagation processes of mesospheric gravity waves on the basis of the results of the high-resolution numerical model. The behaviors of mesospheric gravity waves can be clearly explained using both fundamental and cutting-edge theories of fluid dynamics.
