Record Nr.	UNISA996418436303316
Autore	Mendive Tapia Eduardo
Titolo	Ab initio Theory of Magnetic Ordering [[electronic resource]] : Electronic Origin of Pair- and Multi-Spin Interactions / / by Eduardo Mendive Tapia
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
ISBN	3-030-37238-3
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (XVIII, 131 p. 35 illus., 34 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	621.34
Soggetti	Magnetism Magnetic materials Mathematical physics Phase transitions (Statistical physics) Quantum computers Spintronics Magnetism, Magnetic Materials Theoretical, Mathematical and Computational Physics Phase Transitions and Multiphase Systems Quantum Information Technology, Spintronics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Introduction Ab-initio Theory of Electronic Structure Disordered Local Moment Theory and Fast Electronic Responses Minimisation of the Gibbs Free Energy: Magnetic Phase Diagrams and Caloric Eects Pair- and Four- Spin Interactions in the Heavy Rare Earth Elements Frustrated Magnetism in Mn-based Antiperovskite Mn3GaN Summary and Outlook Appendix.
Sommario/riassunto	Many technological applications exploit a variety of magnetic structures, or magnetic phases, to produce and optimise solid-state functionality. However, most research advances are restricted to a reduced number of phases owing to computational and resource constraints. This thesis presents an ab-initio theory to efficiently

1.

describe complex magnetic phases and their temperature-dependent properties. The central assumption is that magnetic phases evolve slowly compared with the underlying electronic structure from which they emerge. By describing how the electronic structure adapts to the type and extent of magnetic order, a theory able to describe multi-spin correlations and their effect on the magnetism at finite temperature is obtained. It is shown that multi-spin correlations are behind the temperature and magnetic field dependence of the diverse magnetism in the heavy rare earth elements. Magnetically frustrated Mn-based materials and the effect of strain are also investigated. These studies demonstrate that the performance of solid-state refrigeration can be enhanced by multi-spin effects.