Record Nr. Autore Titolo	UNISA996418176303316 Jones Alexander Thomas Cooling Electrons in Nanoelectronic Devices by On-Chip
Pubbl/distr/stampa	Demagnetisation [[electronic resource] /] / by Alexander Thomas Jones Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
ISBN	3-030-51233-9
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (XIII, 94 p. 45 illus.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190- 5053
Disciplina	536.56
Soggetti	Low temperature physics Low temperatures Materials science Solid state physics Low Temperature Physics Materials Science, general Solid State Physics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	Introduction Background On-Chip Demagnetisation Cooling on a Cryogen-Free Dilution Refrigerator On-Chip Demagnetisation Cooling on a Cryogen-Filled Dilution Refrigerator On-Chip Demagnetisation Cooling of a High Capacitance CBT Summary and Outlook.
Sommario/riassunto	This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached in such systems was around 4 millikelvin. Here, a temperature of 1.2mK is reported in a nanoelectronic device. The thesis introduces the idea that on-chip demagnetization refrigeration can be used to cool a wide variety of nanostructures and devices to microkelvin temperatures. This brings the exciting possibility of discovering new physics, such as exotic electronic phases, in an

1.

unexplored regime and the potential to improve the performance of existing applications, including solid-state quantum technologies. Since the first demonstration of on-chip demagnetization refrigeration, described here, the technique has been taken up by other research groups around the world. The lowest on-chip temperature is currently 0.4mK. Work is now underway to adapt the technique to cool other materials and devices, ultimately leading to a platform to study nanoscale materials, devices and circuits at microkelvin temperatures.