

1. Record Nr.	UNISA996418175403316
Autore	Nishiguchi Daiki
Titolo	Order and Fluctuations in Collective Dynamics of Swimming Bacteria [[electronic resource]] : Experimental Exploration of Active Matter Physics / / by Daiki Nishiguchi
Pubbl/distr/stampa	Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
ISBN	981-329-998-3
Edizione	[1st ed. 2020.]
Descrizione fisica	1 online resource (XIII, 128 p. 66 illus., 19 illus. in color.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	530.13
Soggetti	Amorphous substances Complex fluids Statistical physics Physical chemistry Computational complexity Soft and Granular Matter, Complex Fluids and Microfluidics Statistical Physics and Dynamical Systems Physical Chemistry Applications of Nonlinear Dynamics and Chaos Theory Complexity
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Nota di contenuto	General Introduction -- Standard Models on Collective Motion -- Collective Motion of Filamentous Bacteria -- Active Turbulence -- Encounter of Bacterial Turbulence with Periodic Structures -- General Conclusion and Outlook.
Sommario/riassunto	This thesis focuses on experimental studies on collective motion using swimming bacteria as model active-matter systems. It offers comprehensive reviews of state-of-the-art theories and experiments on collective motion from the viewpoint of nonequilibrium statistical physics. The author presents his experimental studies on two major classes of collective motion that had been well studied theoretically. Firstly, swimming filamentous bacteria in a thin fluid layer are shown to

exhibit true, long-range orientational order and anomalously strong giant density fluctuations, which are considered universal and landmark signatures of collective motion by many numerical and theoretical works but have never been observed in real systems. Secondly, chaotic bacterial turbulence in a three-dimensional dense suspension without any long-range order as described in the first half is demonstrated to be capable of achieving antiferromagnetic vortex order by imposing a small number of constraints with appropriate periodicity. The experimental results presented significantly advance our fundamental understanding of order and fluctuations in collective motion of motile elements and their future applications.
