

1. Record Nr.	UNISA996335978703316
Titolo	Inside Microsoft Visual Basic
Pubbl/distr/stampa	Rochester, N.Y., : Element K Journals
Soggetti	Visual Basic (Computer program language) Periodicals.
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Periodico
2. Record Nr.	UNINA9910595032003321
Autore	Restrepo Francisco
Titolo	Angle-Resolved Photoemission Spectroscopy Study of Spin Fluctuations in the Cuprate Superconductors // by Francisco Restrepo
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
ISBN	9783031109799 9783031109782
Edizione	[1st ed. 2022.]
Descrizione fisica	1 online resource (113 pages)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061
Disciplina	537.623 543.62
Soggetti	Superconductivity Superconductors Superconductors - Chemistry Spectrum analysis Quantum electrodynamics Spectroscopy Quantum Electrodynamics, Relativistic and Many-body Calculations
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral Thesis accepted by the University of Illinois at Chicago, USA."
Nota di bibliografia	Includes bibliographical references.

Nota di contenuto

Chapter 1. Introduction -- Chapter 2. Superconductivity and the cuprates -- Chapter 3. Angle-Resolved Photoemission Spectroscopy -- Chapter 4. Experimental Details -- Chapter 5. Results -- Chapter 6. Conclusions.

Sommario/riassunto

This thesis makes significant advances towards an understanding of superconductivity in the cuprate family of unconventional, high-temperature superconductors. Even though the high-temperature superconductors were discovered over 35 years ago, there is not yet a general consensus on an acceptable theory of superconductivity in these materials. One of the early proposals suggested that collective magnetic excitations of the conduction electrons could lead them to form pairs, which in turn condense to form the superconducting state at a critical temperature T_c . Quantitative calculations of T_c using experimental data were, however, not available to verify the applicability of this magnetic mechanism. In this thesis, the author constructed an angle-resolved photoemission apparatus that could provide sufficiently accurate data of the electronic excitation spectra of samples in the normal state, data which was furthermore unusually devoid of any surface contamination. The author also applied the Bethe-Salpeter method to his uncommonly pristine and precise normal state data, and was able to predict the approximate superconducting transition temperatures of different samples. This rare combination of experiment with sophisticated theoretical calculations leads to the conclusion that antiferromagnetic correlations are a viable candidate for the pairing interaction in the cuprate superconductors.