	UNISA996205536603316
Titolo	Antioxidants and reactive oxygen species in plants [[electronic resource] /] / edited by Nicholas Smirnoff
Pubbl/distr/stampa	Oxford ; ; Ames, Iowa, : Blackwell Pub., 2005
ISBN	1-280-74821-4 9786610748211 0-470-76116-4 0-470-98856-8 1-4051-7146-4
Descrizione fisica	1 online resource (318 p.)
Collana	Biological Sciences Series
Altri autori (Persone)	SmirnoffN
Disciplina	572.42 572/.42
Soggetti	Antioxidants - Physiological effect Active oxygen - Physiological effect Plants - Metabolism
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Formato Livello bibliografico	Materiale a stampa Monografia
Formato Livello bibliografico Note generali	Materiale a stampa Monografia Description based upon print version of record.
Formato Livello bibliografico Note generali Nota di bibliografia	Materiale a stampa Monografia Description based upon print version of record. Includes bibliographical references and index.

1.

	and lambda-GSTs; 2.6.4 Protein disulfide isomerases
	 2.7 Peroxiredoxins, thiol/disulfide proteins in antioxidant defence2.7.1 1-Cys Prx; 2.7.2 2-Cys Prx; 2.7.3 Prx Q; 2.7.4 Type II Prx; 2.8 The thiol proteome of plants; 2.9 Thiol homeostasis in subcellular
	compartments; 2.10 Thiol-dependent redox regulation of gene expression; 2.11 Linking thiol regulation to metabolic and developmental pathways; 2.12 Outlook; 3 Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions; 3.1 Introduction; 3.2 Ascorbate; 3.2.1 Distribution and subcellular
	localisation; 3.2.2 Ascorbate biosynthesis; 3.2.3 Ascorbate recycling 3.2.4 Ascorbate and dehydroascorbate transport across membranes3. 2.5 Enzymes involved in ascorbate oxidation; 3.2.6 Ascorbate catabolism; 3.2.7 Control of ascorbate synthesis and metabolic engineering; 3.2.8 The functions of ascorbate; 3.3 Vitamin E:
	tocopherols and tocotrienols; 3.3.1 Isoprenoid antioxidants; 3.3.2 Structure and antioxidant activity of tocopherols and tocotrienols; 3.3.3 Functions of tocopherol; 3.3.4 Biosynthesis of tocopherols and tocotrienols; 3.3.5 Control and engineering of tocopherol and tocotrienols; 3.4.6 Carotopoids; 3.4.1 Carotopoids as
	antioxidants 3.4.2 Carotenoid biosynthesis and metabolic engineering4 Ascorbate peroxidase; 4.1 Enzymatic removal of hydrogen peroxide in plants; 4.2 Functional analysis of APX; 4.3 APX structure; 4.3.1 Overall structure; 4.3.2 Active site structure; 4.3.3 Substrate binding; 4.4 Evolution of APXs; 4.5 Summary; 5 Catalases in plants: molecular and functional properties and role in stress defence; 5.1 Introduction; 5.2 Biochemistry and molecular structure of catalases; 5.2.1 Types of catalases; 5.2.2 Molecular structure; 5.2.3 Mechanism of the catalytic reaction and kinetic properties 5.3 Occurrence and properties of plant catalases
Sommario/riassunto	Reactive oxygen species (ROS) are produced during the interaction of metabolism with oxygen. As ROS have the potential to cause oxidative damage by reacting with biomolecules, research on ROS has concentrated on the oxidative damage that results from exposure to environmental stresses and on the role of ROS in defence against pathogens. However, more recently, it has become apparent that ROS also have important roles as signalling molecules. A complex network of enzymatic and small molecule antioxidants controls the concentration of ROS and repairs oxidative damage, and research is revealing t