Record Nr.	UNISA996203158703316
Autore	Budevski E (Evgeni)
Titolo	Electrochemical phase formation and growth [[electronic resource]] : an introduction to the initial stages of metal deposition / / E. Budevski, G. Staikov, W.J. Lorenz
Pubbl/distr/stampa	Weinheim ; ; New York, : VCH, c1996
ISBN	1-281-75852-3 9786611758523 3-527-61493-1 3-527-61492-3
Descrizione fisica	1 online resource (424 p.)
Collana	Advances in electrochemical science and engineering
Altri autori (Persone)	StaikovGeorgi LorenzW. J
Disciplina	541.37 670.7/32 670.732
Soggetti	Electroplating Metals - Surfaces Crystal growth
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	Description based upon print version of record.
Nota di bibliografia	Includes bibliographical references (p. [343]-380) and indexes.
Nota di contenuto	Electrochemical Phase Formation and Growth; Contents; 1 Fundamentals of Electrocrystallization of Metals; 1.1 Thermodynamic

1.

	Conclusions; 3 Underpotential Deposition of Metals-2D Phases; 3.1 Historical Background; 3.2 Phenomenology; 3.3 Thermodynamics; Thermodynamic formalism; Adsorption isotherm models; Experimental results; 3.4 Structures of 2D Meads Phases Degree of registryInternal strain; Electrochemical results; Comparative and ex situ UHV results; In situ surface analytical results; 3.5 Kinetics; Quasi-homogeneous substrate surface approach; Inhomogeneous substrate surface approach; Phase transitions; 3.6 2D and 3D Me-S Alloy Formation; Phenomenology; Thermodynamics; Structures of 2D and 3D Me-alloys; Kinetics; 3.7 Conclusion; 4 Initial Stages of Bulk Phase Formation; 4.1 Equilibrium Form of Crystals and Forms of Growth; Equilibrium form; Crystal-substrate interaction; Gibbs-Wulff- Kaishew theorem; Two dimensional crystal; Forms of growth Energy of cluster formation3D nucleation; 2D nucleation; Gibbs- Thomson equation; 4.2 Nucleation Rate; Classical approach (Volmer and Weber); Kinetic approach (Becker and Doering); Binding energies and energy of nucleation; Atomistic model; Nucleation rate equation; Small cluster model; Experimental results; 4.3 3D Phase Formation on UPD Modified Foreign Substrate Surfaces; UPD-OPD transitions; Nucleation and growth; Epitaxy; Experimental results; 4.4 Conclusions; 5 Growth of Crystalline Faces; 5.1 Dislocation-Free Crystal Faces; Preparation of single crystal faces by electrodeposition Double pulse techniqueNucleation rate-overvoltage dependence; Time distribution of the nucleation events; Form of growth of monatomic layers; Propagation rate of monatomic steps; Space distribution of nucleation events; Propagation rate of polyatomic steps; Mechanism of metal deposition and adatom concentration; 5.2 Growth Kinetics of Perfect Faces; Mononuclear layer-by-layer growth; Multinuclear monolayer formation; Deposition kinetics on quasi-perfect crystal faces; 5.3 Real Crystal Faces; Dislocations; Spiral growth mechanism; Theory of spiral growth; Growth morphology
Sommario/riassunto	Electrochemical processes and methods are basic to many important scientific disciplines, materials science and nanotechnology being only two keywords. For the first time in more than twenty years this volume presents a critical survey of the foundations, methodology and applications of electrochemical phase formation and growth processes. Written by a team of three internationally renowned authors, it is an invaluable source of information for all scientists concerned with electrocrystallization of metals or the in-situ characterization of electron-conducting surfaces. Not only the numerous i