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2.1c A Continuous, Nowhere Differentiable Function ([167]).

The second edition of this classic textbook presents a rigorous and
self-contained introduction to real analysis with the goal of providing a
solid foundation for future coursework and research in applied
mathematics. Written in a clear and concise style, it covers all of the
necessary subjects as well as those often absent from standard
introductory texts. Each chapter features a “Problems and
Complements” section that includes additional material that briefly
expands on certain topics within the chapter and numerous exercises
for practicing the key concepts. The first eight chapters explore all of
the basic topics for training in real analysis, beginning with a review of
countable sets before moving on to detailed discussions of measure
theory, Lebesgue integration, Banach spaces, functional analysis, and
weakly differentiable functions. More topical applications are discussed
in the remaining chapters, such as maximal functions, functions of
bounded mean oscillation, rearrangements, potential theory, and the
theory of Sobolev functions. This second edition has been completely
revised and updated and contains a variety of new content and
expanded coverage of key topics, such as new exercises on the calculus
of distributions, a proof of the Riesz convolution, Steiner
symmetrization, and embedding theorems for functions in Sobolev
spaces. Ideal for either classroom use or self-study, Real Analysis is an
excellent textbook both for students discovering real analysis for the
first time and for mathematicians and researchers looking for a useful
resource for reference or review. Praise for the First Edition: “[This
book] will be extremely useful as a text. There is certainly enough
material for a year-long graduate course, but judicious selection would
make it possible to use this most appealing book in a one-semester
course for well-prepared students.” —Mathematical Reviews.



