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"The energy consumption issue in distributed computing systems
raises various monetary, environmental and system performance
concerns. Electricity consumption in the US doubled from 2000 to
2005. From a financial and environmental standpoint, reducing the
consumption of electricity is important, yet these reforms must not
lead to performance degradation of the computing systems. These
contradicting constraints create a suite of complex problems that need
to be resolved in order to lead to 'greener’ distributed computing
systems. This book brings together a group of outstanding researchers
that investigate the different facets of green and energy efficient
distributed computing.Key features: One of the first books of its kind
Features latest research findings on emerging topics by well-known
scientists Valuable research for grad students, postdocs, and
researchers Research will greatly feed into other technologies and
application domains"--



