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6.2.3 CUBLAS with Visual Profiler

Beyond simulation and algorithm development, many developers
increasingly use MATLAB even for product deployment in
computationally heavy fields. This often demands that MATLAB codes

run faster by leveraging the distributed parallelism of Graphics

Processing Units (GPUs). While MATLAB successfully provides high-level
functions as a simulation tool for rapid prototyping, the underlying

details and knowledge needed for utilizing GPUs make MATLAB users
hesitate to step into it. Accelerating MATLAB with GPUs offers a primer
on bridging this gap. Starting with the basics, setting



