1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

Edizione
Descrizione fisica

Collana

Disciplina

Collocazione

Lingua di pubblicazione
Formato

Livello bibliografico

Record Nr.
Autore
Titolo

Pubbl/distr/stampa
ISBN

Edizione
Descrizione fisica

Altri autori (Persone)
Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di bibliografia
Nota di contenuto

UNISA990001565520203316
FINE, Ben
Il Capitale di Marx / Ben Fine ; [traduzione di Adriano Nardi]

Napoli : Liguori, 1981

[2. ed]
91p.;21cm
Studi d'economia ; 2

330.01

[1.1.D. 3264(XV F Coll 3/2)
Italiano

Materiale a stampa
Monografia

UNINA9910453700903321
Suh Jung W

Accelerating MATLAB with GPU computing : a primer with examples / /
Jung W. Suh, Youngmin Kim

Waltham, MA :, : Morgan Kaufmann, , 2014
0-12-407916-4

[First edition.]

1 online resource (259 p.)

KimYoungmin

518.0285

Graphics processing units - Programming
Electronic books.

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.
Includes bibliographical references and index.

Front Cover; Accelerating MATLAB with GPU Computing; Copyright
Page; Contents; Preface; Target Readers and Contents; Directions of
this Book; GPU Utilization Using c-mex Versus Parallel Computing



Sommario/riassunto

Toolbox; Tutorial Approach Versus Case Study Approach; CUDA Versus
OpenCL; 1 Accelerating MATLAB without GPU; 1.1 Chapter Objectives;
1.2 Vectorization; 1.2.1 Elementwise Operation; 1.2.2 Vector/Matrix
Operation; 1.2.3 Useful Tricks; 1.3 Preallocation; 1.4 For-Loop; 1.5
Consider a Sparse Matrix Form; 1.6 Miscellaneous Tips; 1.6.1 Minimize
File Read/Write Within the Loop

1.6.2 Minimize Dynamically Changing the Path and Changing the
Variable Class 1.6.3 Maintain a Balance Between the Code Readability
and Optimization; 1.7 Examples; 2 Configurations for MATLAB and
CUDA; 2.1 Chapter Obijectives; 2.2 MATLAB Configuration for c-mex
Programming; 2.2.1 Checklists; 2.2.1.1 C/C++ Compilers; 2.2.1.2
NVIDIA CUDA Compiler nvcc; 2.2.2 Compiler Selection; 2.3 "Hello,
mex!" using C-MEX; 2.3.1.1 Summary; 2.4 CUDA Configuration for
MATLAB; 2.4.1 Preparing CUDA Settings; 2.5 Example: Simple Vector
Addition Using CUDA; 2.5.1.1 Summary; 2.6 Example with Image
Convolution

2.6.1 Convolution in MATLAB 2.6.2 Convolution in Custom c-mex;
2.6.3 Convolution in Custom c-mex with CUDA; 2.6.4 Brief Time
Performance Profiling; 2.7 Summary; 3 Optimization Planning through
Profiling; 3.1 Chapter Objectives; 3.2 MATLAB Code Profiling to Find
Bottlenecks; 3.2.1 More Accurate Profiling with Multiple CPU Cores; 3.3
c-mex Code Profiling for CUDA; 3.3.1 CUDA Profiling Using Visual
Studio; 3.3.2 CUDA Profiling Using NVIDIA Visual Profiler; 3.4
Environment Setting for the c-mex Debugger; 4 CUDA Coding with c-
mex; 4.1 Chapter Objectives; 4.2 Memory Layout for c-mex

4.2.1 Column-Major Order 4.2.2 Row-Major Order; 4.2.3 Memory
Layout for Complex Numbers in c-mex; 4.3 Logical Programming
Model; 4.3.1 Logical Grouping 1; 4.3.2 Logical Grouping 2; 4.3.3
Logical Grouping 3; 4.4 Tidbits of GPU; 4.4.1 Data Parallelism; 4.4.2
Streaming Processor; 4.4.3 Steaming Multiprocessor; 4.4.4 Warp; 4.4.5
Memory; 4.5 Analyzing Our First Naive Approach; 4.5.1 Optimization A:
Thread Blocks; 4.5.2 Optimization B; 4.5.3 Conclusion; 5 MATLAB and
Parallel Computing Toolbox; 5.1 Chapter Objectives; 5.2 GPU
Processing for Built-in MATLAB Functions; 5.2.1 Pitfalls in GPU
Processing

5.3 GPU Processing for Non-Built-in MATLAB Functions 5.4 Parallel
Task Processing; 5.4.1 MATLAB Worker; 5.4.2 parfor; 5.5 Parallel Data
Processing; 5.5.1 spmd; 5.5.2 Distributed and Codistributed Arrays;
5.5.3 Workers with Multiple GPUs; 5.6 Direct use of CUDA Files without
c-mex; 6 Using CUDA-Accelerated Libraries; 6.1 Chapter Objectives;
6.2 CUBLAS; 6.2.1 CUBLAS Functions; 6.2.2 CUBLAS Matrix-by-Matrix
Multiplication; 6.2.2.1 Step 1; 6.2.2.2 Step 2; 6.2.2.3 Step 3; 6.2.2.4
Step 4; 6.2.2.5 Step 5; 6.2.2.6 Step 6; 6.2.2.7 Step 7; 6.2.2.8 Step 8;
6.2.2.9 Step 9

6.2.3 CUBLAS with Visual Profiler

Beyond simulation and algorithm development, many developers
increasingly use MATLAB even for product deployment in
computationally heavy fields. This often demands that MATLAB codes

run faster by leveraging the distributed parallelism of Graphics

Processing Units (GPUs). While MATLAB successfully provides high-level
functions as a simulation tool for rapid prototyping, the underlying

details and knowledge needed for utilizing GPUs make MATLAB users
hesitate to step into it. Accelerating MATLAB with GPUs offers a primer
on bridging this gap. Starting with the basics, setting



