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Set theory, logic, discrete mathematics, and fundamental algorithms
(along with their correctness and complexity analysis) will always
remain useful for computing professionals and need to be understood
by students who want to succeed. This textbook explains a number of
those fundamental algorithms to programming students in a concise,
yet precise, manner. The book includes the background material
needed to understand the explanations and to develop such
explanations for other algorithms. The author demonstrates that clarity
and simplicity are achieved not by avoiding formalism, but by using it
properly.The book is self-contained, assuming only a background in
high school mathematics and elementary program writing skills. It does
not assume familiarity with any specific programming language.
Starting with basic concepts of sets, functions, relations, logic, and
proof techniques including induction, the necessary mathematical
framework for reasoning about the correctness, termination and
efficiency of programs is introduced with examples at each stage. The
book contains the systematic development, from appropriate theories,
of a variety of fundamental algorithms related to search, sorting,
matching, graph-related problems, recursive programming
methodology and dynamic programming techniques, culminating in
parallel recursive structures.



