1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione
Descrizione fisica
Collana

Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico

Nota di contenuto

UNINA9911046566003321
Misra Jayadev
Effective Theories in Programming Practice

New York City : , : Association for Computing Machinery, , 2022
©2022

9781450399746
1450399746

[1st ed.]
1 online resource (562 p.)
ACM Bks.

Computer science
Computer logic

Inglese
Materiale a stampa
Monografia

Intro -- Effective Theories in Programming Practice -- Contents --
Preface -- Acknowledgment -- 1 Introduction -- 1.1 Motivation for

This Book -- 1.2 Lessons from Programming Theory -- 1.2.1
Terminology: Algorithms versus Programs -- 1.2.2 Domain Knowledge
-- 1.3 Formalism: The Good, the Bad and the Ugly -- 1.3.1 Coxeter's
Rabbit -- 1.3.2 Why Use Formalism -- 2 Set Theory, Logic and Proofs
-- 2.1 Set -- 2.1.1 Basic Concepts -- 2.1.2 Mathematical Objects Used
in this Book -- 2.1.2.1 Tuple -- 2.1.2.2 Sequence -- 2.1.2.3 Character
--2.1.2.4 String -- 2.1.2.5 Integer Interval -- 2.1.2.6 Array, Matrix --
2.1.2.7 Tree -- 2.1.2.8 Function, Relation -- 2.1.3 Set Comprehension
-- 2.1.4 Subset -- 2.1.5 Operations on Sets -- 2.1.5.1 Binary
Operators: Commutativity, Associativity, Distributivity -- 2.1.5.2 Union
-- 2.1.5.3 Intersection -- 2.1.5.4 Complement -- 2.1.5.5 Cartesian
Product -- 2.1.5.6 Difference, Symmetric Difference -- 2.1.5.7
Operations on Sequences -- 2.1.6 Properties of Set Operations --
2.1.6.1 Laws about Sets -- 2.1.6.2 Laws about Subsets -- 2.1.6.3 Venn
Diagram -- 2.2 Function -- 2.2.1 Basic Concepts -- 2.2.1.1 Function
Arity -- 2.2.1.2 Function Definition and Computability -- 2.2.1.3 A
Taxonomy of Functions -- 2.2.1.4 Cantor-Schroder-Bernstein Theorem
-- 2.2.2 Function Composition -- 2.2.3 Function Inverse -- 2.2.4 One-
way Function -- 2.2.5 Monotonic Function -- 2.2.6 Higher-order



Function -- 2.2.7 Pigeonhole Principle -- 2.2.7.1 Minimum Length of
Monotone Subsequence -- 2.3 Relation -- 2.3.1 Basic Concepts --
2.3.2 Relational Databases -- 2.3.3 Important Attributes of Binary
Relations -- 2.3.4 Equivalence Relation -- 2.3.4.1 Checking for
Equivalence -- 2.3.4.2 Bloom Filter -- 2.3.5 Closure of Relation -- 2.4
Order Relations: Total and Partial -- 2.4.1 Total Order -- 2.4.1.1
Sequence Comprehension Using a Total Order.

2.4.1.2 Lexicographic Order -- 2.4.1.3 An Example: Least-significant
Digit Sort -- 2.4.2 Partial Order -- 2.4.2.1 Topological Order -- 2.4.2.2
Least Upper Bound, Greatest Lower Bound -- 2.4.2.3 Interval -- 2.4.2.4
Lattice -- 2.4.2.5 Monotonic Function over Partially Ordered Sets -- 2.5
Propositional Logic -- 2.5.1 Basic Concepts -- 2.5.2 Laws of
Propositional Logic -- 2.5.3 Additional Aspects of Propositional Logic
-- 2.5.3.1 Omitting Parentheses with Transitive and Associative
Operators -- 2.5.3.2 Strengthening, Weakening Predicates -- 2.5.3.3
Relationship with Set Algebra -- 2.5.3.4 Boolean Algebra as a
Commutative Ring -- 2.5.3.5 Functional Completeness of Boolean
Operators -- 2.5.4 Satisfiability, Validity -- 2.5.4.1 Conjunctive and
Disjunctive Normal Form -- 2.5.4.2 Resolution Principle -- 2.5.4.3
DPLL Algorithm -- 2.6 Predicate Calculus -- 2.6.1 Free and Bound
Variables -- 2.6.2 Syntax of Quantified Expressions -- 2.6.3 Laws of
Predicate Calculus -- 2.6.4 Duality Principle -- 2.6.5 Quantified
Expressions over Non-Boolean Domains -- 2.7 Formal Proofs -- 2.7.1
Proof Strategies -- 2.7.2 A Style of Writing Proofs -- 2.8 Examples of
Proof Construction -- 2.8.1 Proofs by Contradiction, Contrapositive --
2.8.1.1 2 is Irrational -- 2.8.1.2 Pairing Points with Non-intersecting
Lines -- 2.8.1.3 Euclid's Proof of Infinity of Primes, by Contradiction --
2.8.2 Constructive and Non-constructive Existence Proofs -- 2.8.3 Sum
and Product Puzzle -- 2.8.4 Russell's Paradox -- 2.8.5 Cantor's
Diagonalization -- 2.8.6 Saddle Point -- 2.8.7 Properties of the Least
Upper Bound of Partial Order -- 2.8.8 Knaster-Tarski Theorem --
2.8.8.1 Proof of Theorem 2.1 (part 1) -- 2.8.8.2 Proof of Theorem 2.1
(part 2) -- 2.9 Exercises -- 3 Induction and Recursion -- 3.1
Introduction -- 3.1.1 Weak Induction Principle Over Natural Numbers.
3.1.2 Strong Induction Principle Over Natural Numbers -- 3.2 Examples
of Proof by Induction -- 3.2.1 Examples from Arithmetic -- 3.2.1.1

Sum of Cubes -- 3.2.1.2 A Fundamental Theorem of Number Theory --
3.2.1.3 Fibonacci Sequence -- 3.2.1.4 Harmonic Numbers -- 3.2.2
Examples About Games and Puzzles -- 3.2.2.1 Trimino Tiling --
3.2.2.2 A Pebble Movement Game -- 3.3 Methodologies for Applying
Induction -- 3.3.1 Applying the Base Step -- 3.3.2 Strengthening --
3.3.3 Generalization -- 3.3.4 Problem Reformulation, Specialization --
3.3.5 Proof by Contradiction versus Proof by Induction -- 3.3.6
Misapplication of Induction -- 3.4 Advanced Examples -- 3.4.1
Permutation Using Transposition -- 3.4.2 Arithmetic Mean Is At Least
the Geometric Mean -- 3.4.2.1 A Proof Due to Hardy, Littlewood and
Pélya -- 3.4.2.2 A Simple Proof Using Reformulation -- 3.4.3 Unique
Prime Factorization -- 3.4.4 Termination of a Game -- 3.4.5 Hadamard
Matrix -- 3.4.6 McCarthy's 91 Function -- 3.4.7 Topological Order of
Partial Orders -- 3.4.7.1 Topological Order Over Finite Sets -- 3.4.7.2
Topological Order Over Countably Infinite Sets -- 3.4.8 Konig's Lemma
-- 3.4.9 Winning Strategy in Finite 2-Player Game -- 3.5 Noetherian or
Well-founded Induction -- 3.5.1 Well-founded Relation -- 3.5.1.1
Examples of Well-founded Relations -- 3.5.1.2 Lexicographic Order --
3.5.1.3 Equivalence of Two Notions of Well-foundedness -- 3.5.1.4
Well-founded Induction Principle -- 3.5.1.5 Examples of Application of
Well-founded Induction -- 3.5.2 Multiset or Bag Ordering -- 3.5.2.1
Dershowitz-Manna Order -- 3.5.2.2 Dershowitz-Manna Order is a



Well-founded Order -- 3.6 Structural Induction -- 3.6.1 Defining
Recursive Structures -- 3.6.2 Structural Induction Principle -- 3.7
Exercises -- 4 Reasoning About Programs -- 4.1 Overview -- 4.2
Fundamental Ideas -- 4.2.1 Invariant -- 4.2.1.1 The Coffee Can
Problem.

4.2.1.2 Chameleons -- 4.2.2 Termination -- 4.3 Formal Treatment of
Partial Correctness -- 4.3.1 Specification of Partial Correctness -- 4.3.2
Hoare-triple or Contract -- 4.3.3 Auxiliary and Derived Variables -- 4.4
A Modest Programming Language -- 4.5 Proof Rules -- 4.5.1 Rule of
Consequence -- 4.5.2 Simple Commands -- 4.5.3 Sequencing
Command -- 4.5.4 Conditional Command -- 4.5.5 Loop Command --
4.5.6 Non-deterministic Assignment -- 4.5.7 Procedure Call -- 4.5.8
Procedure Implementation -- 4.5.9 Program Annotation -- 4.6 More on
Invariant -- 4.6.1 Heuristics for Postulating Invariant -- 4.6.2 Invariant
Strength -- 4.6.3 Perpetual Truth -- 4.6.4 Proving Non-termination --
4.6.4.1 Coloring Cells in a Square Grid -- 4.6.4.2 15-Puzzle -- 4.7
Formal Treatment of Termination -- 4.7.1 A Variation of the Coffee Can
Problem -- 4.7.2 Chameleons Problem Revisited -- 4.7.3 Pairing Points
with Non-intersecting Lines -- 4.7.4 A Problem on Matrices -- 4.8
Reasoning about Performance of Algorithms -- 4.9 Order of Functions
-- 4.9.1 Function Hierarchy -- 4.9.2 Function Order -- 4.10

Recurrence Relations -- 4.10.1 Smaller Examples -- 4.10.1.1 Searching
Sorted and Unsorted Lists -- 4.10.1.2 Merge-Sort -- 4.10.2 Solving
Recurrence Relations -- 4.10.2.1 Interpolation -- 4.10.2.2 Expansion

-- 4.10.2.3 Master Theorem -- 4.10.3 Divide and Conquer -- 4.10.3.1
Long Multiplication -- 4.10.3.2 Batcher Odd-Even Sort -- 4.10.3.3
Median-Finding -- 4.11 Proving Programs in Practice -- 4.12 Exercises
-- 4.A Appendix: Proof of Theorem 4.1 -- 4.B Appendix: Termination

in Chameleons Problem -- 5 Program Development -- 5.1 Binary
Search -- 5.2 Saddleback Search -- 5.3 Dijkstra's Proof of the am-gm
Inequality -- 5.4 Quicksort -- 5.4.1 Specification of quicksort -- 5.4.2
Procedure quicksort: Implementation and Proof -- 5.4.3 Procedure
partition: Implementation and Proof.

5.4.4 Cost of quicksort -- 5.5 Heapsort -- 5.5.1 Outline of the Main
Program -- 5.5.2 Heap Data Structure -- 5.5.3 extendHeap -- 5.5.3.1
Analysis of extendHeap -- 5.5.4 heapify -- 5.5.5 Running Time of
Heapsort -- 5.6 Knuth-Morris-Pratt String-matching Algorithm --

5.6.1 The String-matching Problem and Outline of the Algorithm --
5.6.1.1 A Naive Algorithm -- 5.6.1.2 KMP Algorithm -- 5.6.2

Underlying Theory of the KMP Algorithm -- 5.6.2.1 Bifix and Core --
5.6.2.2 A Characterization of Bifixes -- 5.6.3 Core Computation --
5.6.3.1 Underlying Theorem for Core Computation -- 5.6.3.2 Abstract
Program for Core Computation -- 5.6.3.3 Representation of Prefixes --
5.6.3.4 Running Time -- 5.6.4 KMP Program -- 5.7 A Sieve Algorithm
for Prime Numbers -- 5.7.1 Sieve of Eratosthenes -- 5.7.2 Correctness
--5.7.2.1 Invariant -- 5.7.2.2 Verification Conditions -- 5.7.2.3
Termination -- 5.7.3 Characterization of Composite Numbers -- 5.7.4
Refinement of the Sieve Program -- 5.7.4.1 Initialization -- 5.7.4.2
Loop Iteration Condition -- 5.7.4.3 Removing Multiples of p, Updating
p -- 5.7.4.4 Reestablishing Invariant J -- 5.7.5 Discussion -- 5.8 Stable
Matching -- 5.8.1 Formal Description of the Problem and an Algorithm
-- 5.8.2 Correctness -- 5.8.3 Refinement of the Algorithm -- 5.9
Heavy-hitters: A Streaming Algorithm -- 5.9.1 Problem Description --
5.9.2 An Abstract Algorithm and its Refinement -- 5.9.2.1 An Abstract
Algorithm -- 5.9.2.2 Refinement -- 5.9.3 One-pass Algorithm for
Approximate Heavy-hitters -- 5.9.4 The Majority Element of a Bag --
5.10 Exercises -- 6 Graph Algorithms -- 6.1 Introduction -- 6.2
Background -- 6.2.1 Directed and Undirected Graph -- 6.2.2 Paths and



Sommario/riassunto

Cycles -- 6.2.3 Connected Components -- 6.2.4 Labeled Graph --
6.2.5 Graph Representation -- 6.2.6 Graph Manipulation: Merging,
Pruning and Joining -- 6.2.6.1 Adding/Removing Nodes/Edges.
6.2.6.2 Merging Nodes.

Set theory, logic, discrete mathematics, and fundamental algorithms
(along with their correctness and complexity analysis) will always
remain useful for computing professionals and need to be understood
by students who want to succeed. This textbook explains a number of
those fundamental algorithms to programming students in a concise,
yet precise, manner. The book includes the background material
needed to understand the explanations and to develop such
explanations for other algorithms. The author demonstrates that clarity
and simplicity are achieved not by avoiding formalism, but by using it
properly.The book is self-contained, assuming only a background in
high school mathematics and elementary program writing skills. It does
not assume familiarity with any specific programming language.
Starting with basic concepts of sets, functions, relations, logic, and
proof techniques including induction, the necessary mathematical
framework for reasoning about the correctness, termination and
efficiency of programs is introduced with examples at each stage. The
book contains the systematic development, from appropriate theories,
of a variety of fundamental algorithms related to search, sorting,
matching, graph-related problems, recursive programming
methodology and dynamic programming techniques, culminating in
parallel recursive structures.



