1. Record Nr. UNINA9911034864703321 Autore Kim Geonyoung **Titolo** Applicability of No-insulation High-Temperature Superconductor Saddle-Shaped Dipole Magnet to Particle Accelerator / / by Geonyoung Singapore:,: Springer Nature Singapore:,: Imprint: Springer,, 2025 Pubbl/distr/stampa **ISBN** 981-9511-31-3 Edizione [1st ed. 2025.] Descrizione fisica 1 online resource (174 pages) Collana Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061 541.0421 Disciplina 620.112973 Soggetti Superconductors - Chemistry Materials Chemistry Superconductivity Superconductors Magnetic materials Particle accelerators Materials Chemistry Magnetic Materials Accelerator Physics Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia Nota di contenuto Abstract -- 1 INTRODUCTION -- 2 ANALYSIS METHODS FOR SADDLE-SHAPED DIPOLE MAGNET ADOPTING NO-INSULATION TECHNIQUE -- 3 DESIGN, CONSTRUCTION, AND OPERATION OF SADDLE-SHAPED DIPOLE MAGNET -- 4 EXPERIMENTAL RESULTS AND ANALYSIS OF HTS SADDLE-SHAPED DIPOLE MAGNET -- 5 CONCLUSION -- Appendix.

Sommario/riassunto

This thesis addresses research on the design, fabrication, and operation of the first saddle-shaped dipole magnet for particle

accelerators using a no-insulation high-temperature superconducting (HTS) magnet technology. Unlike HTS magnets with various geometries used in other applications, saddle-shaped magnets posed unresolved

challenges in analysis and fabrication due to their complex shape. This thesis is the first study to systematically classify these issues and propose detailed solutions for each. Scaling up the techniques used in this research could enable the development of dipole magnets exceeding 20 T, significantly enhancing particle accelerator performance. Institutions such as CERN and INFN-LASA are pursuing high-field HTS magnets, and this study has led to international collaborations, including Horizon Europe and the International Muon Collider Collaboration. This research has opened a new chapter in foundational technology for particle accelerators, which are widely adopted in particle physics, cancer treatment, chemistry, biotechnology, and materials science. Moreover, it addresses major challenges in HTS magnet technology, such as precise estimation of critical current, screening current analysis, and quench repetition experiments and analysis, by defining these problems and presenting viable solutions with experimental validations.