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This insightful book combines the history, pedagogy, and
popularization of algebra to present a unified discussion of the subject.
Classical Algebra provides a complete and contemporary perspective on
classical polynomial algebra through the exploration of how it was
developed and how it exists today. With a focus on prominent areas
such as the numerical solutions of equations, the systematic study of
equations, and Galois theory, this book facilitates a thorough
understanding of algebra and illustrates how the concepts of modern
algebra originally developed from classical algebraic precurso


