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"Machine learning (ML) and quantum computing are two technologies
that have the potential to allow us to solve complex, previously
impossible problems and help speed up areas such as model training
or pattern recognition. The future of computing will certainly be
comprised of classical, biologically inspired, and quantum computing.
The intersection between quantum computing and AI/ML has received
considerable attention in recent years and has enabled the
development of quantum machine learning algorithms such as
quantum-enhanced Support Vector Machines (QSVMs), QSVM multiclass
classification, variational quantum classifiers or quantum generative
adversarial networks (QGANS)."--



