1. Record Nr. UNINA9911019922103321

Autore Adeli Hojjat <1950->

Titolo Cost optimization of structures: fuzzy logic, genetic algorithms, and

parallel computing / / Hojjat Adeli, Kamal C. Sarma

Pubbl/distr/stampa Chichester, England;; Hoboken, NJ,: Wiley, c2006

ISBN 9786610722211 9781280722219

Descrizione fisica 1 online resource (223 p.)

Altri autori (Persone) SarmaKamal C <1955-> (Kamal Chandra)

Disciplina 721/.042

Soggetti Structural optimization - Mathematics

Skyscrapers - Design and construction - Cost control

Lingua di pubblicazione Inglese

Formato Materiale a stampa

Livello bibliografico Monografia

Note generali Description based upon print version of record.

Nota di bibliografia Includes bibliographical references (p. [185]-199) and index.

Nota di contenuto Cost Optimization of Structures; Contents; Preface; Acknowledgments;

About the Authors; 1 Introduction; 1.1 The Case for Cost Optimization; 1.2 Cost Optimization of Concrete Structures; 1.2.1 Concrete Beams and Slabs; 1.2.2 Concrete Columns; 1.2.3 Concrete Frame Structures; 1.2.4 Bridge Structures; 1.2.5 Water Tanks; 1.2.6 Folded Plates and Shear Walls; 1.2.7 Concrete Pipes; 1.2.8 Concrete Tensile Members; 1.2.9 Cost Optimization Using the Reliability Theory; 1.2.10 Concluding

Comments; 1.3 Cost Optimization of Steel Structures; 1.3.1

Deterministic Cost Optimization

1.3.2 Cost Optimization Using the Reliability Theory1.3.3 Fuzzy Optimization; 1.3.4 Concluding Comments; 2 Evolutionary Computing and the Genetic Algorithm; 2.1 Overview and Basic Operations; 2.2 Coding and Decoding; 2.3 Basic Operations in Genetic Algorithms; 2.4 GA with the Penalty Function Method; 2.4.1 Problem Formulation for

Axial Force (Truss) Structures; 2.4.2 Genetic Algorithm with the Penalty Function Method; 2.5 Augmented Lagrangian Method; 2.6 GA with the Augmented Lagrangian Method; 2.6.1 Problem Formulation for Axial Force (Truss) Structures

2.6.2 Genetic Algorithm with the Augmented Lagrangian Method3 Cost Optimization of Composite Floors; 3.1 Introduction; 3.2 Minimum Cost Design of Composite Beams; 3.2.1 Cost Function; 3.2.2 Constraints; 3.2.3 Problem Formulation as a Mixed Integer-Discrete Nonlinear Programming Problem: 3.3 Solution by the Floating-Point Genetic Algorithm; 3.3.1 Binary Versus Floating-Point GA; 3.3.2 Crossover Operation for the Floating-Point GA; 3.3.3 Mutation Operation for the Floating-Point GA; 3.3.4 Floating-Point GA for Cost Optimization of Composite Floors; 3.4 Solution by the Neural Dynamics Method 3.5 Counter Propagation Neural (CPN) Network for Function Approximations 3.6 Examples; 3.6.1 Example 1; 3.6.2 Example 2; 4 Fuzzy Genetic Algorithm for Optimization of Steel Structures; 4.1 Introduction; 4.2 Fuzzy Set Theory and Structural Optimization; 4.3 Minimum Weight Design of Axially Loaded Space Structures; 4.4 Fuzzy Membership Functions; 4.5 Fuzzy Augmented Lagrangian Genetic Algorithm; 4.6 Implementation and Examples; 4.6.1 Example 1; 4.6.2 Example 2: 4.7 Conclusion: 5 Fuzzy Discrete Multi-criteria Cost Optimization of Steel Structures: 5.1 Cost of a Steel Structure 5.2 Primary Contributing Factors to the Cost of a Steel Structure 5.3 Fuzzy Discrete Multi-criteria Cost Optimization: 5.4 Membership Functions; 5.4.1 Membership Function for Minimum Cost; 5.4.2 Membership Function for Minimum Weight; 5.4.3 Membership Function for Minimum Number of Section Types; 5.5 Fuzzy Membership Functions for Criteria with Unequal Importance; 5.6 Pareto Optimality; 5.7 Selection of Commercially Available Discrete Shapes; 5.8 Implementation and a Parametric Study: 5.9 Application to High-Rise Steel Structures; 5.9.1 Example 1; 5.9.2 Example 2; 5.10 Concluding Comments 6 Parallel Computing

Sommario/riassunto

While the weight of a structure constitutes a significant part of the cost, a minimum weight design is not necessarily the minimum cost design. Little attention in structural optimization has been paid to the cost optimization problem, particularly of realistic three-dimensional structures. Cost optimization is becoming a priority in all civil engineering projects, and the concept of Life-Cycle Costing is penetrating design, manufacturing and construction organizations. In this groundbreaking book the authors present novel computational models for cost optimization of large scale, realistic

2. Record Nr. UNIORUON00006560 Autore ZULFIKAR, Hamza **Titolo** Bitlis - Mus yorelerinde halk kulturu : Ataturk ve kunayimilliye hareketleri / Hamza Zulfikar Pubbl/distr/stampa Ankara, : Feryal Matbaacilik Sanayi ve Ticaret Limitet Sirketi, 1992 **ISBN** 97-533-8912-2 Descrizione fisica V, 109 p.; 24 cm TUR IV Classificazione Soggetti Turchia - Storia - Sec. 20 Lingua di pubblicazione Turkish

Materiale a stampa

Monografia

Formato

Livello bibliografico