
UNINA99110194680033211. Record Nr.

Titolo Software measurement and estimation : a practical approach / / Linda
M. Laird, M. Carol Brennan

Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, 2006

ISBN 9786610468447
9781280468445
1280468440
9780470247808
0470247800
9780471792536
0471792535
9780471792529
0471792527

Descrizione fisica 1 online resource (276 p.)

Collana Quantitative software engineering series ; ; 2

Altri autori (Persone) BrennanM. Carol <1954->

Disciplina 005.1/4

Soggetti Software measurement
Software engineering

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Acknowledgments -- 1. Introduction -- 1.1 Objective -- 1.2 Approach
-- 1.3 Motivation -- 1.4 Summary -- References -- Chapter 1 Side Bar
-- 2. What to Measure -- 2.1 Method 1: The Goal Question Metrics
Approach -- 2.2 Extension to GQM: Metrics Mechanism is Important --
2.3 Method 2: Decision Maker Model -- 2.4 Method 3: Standards
Driven Metrics -- 2.5 What to Measure is a Function of Time -- 2.6
Summary -- References -- Exercises -- Project -- 3. Fundamentals of
Measurement -- 3.1 Initial Measurement Exercise -- 3.2 The Challenge
of Measurement -- 3.3 Measurement Models -- 3.3.1 Text Models --
3.3.2 Diagrammatic Models -- 3.3.3 Algorithmic Models -- 3.3.4
Model Examples: Response Time -- 3.3.5 The Pantometric Paradigm -
How to Measure Anything -- 3.4 Meta-Model for Metrics -- 3.5 The
Power of Measurement -- 3.6 Measurement Theory -- 3.6.1

Autore Laird Linda M. <1952->

Materiale a stampa

Monografia



Introduction to Measurement Theory -- 3.6.2 Measurement Scales --
3.6.3 Measures of Central Tendency and Variability -- 3.6.3.1 Measures
of Central Tendency -- 3.6.3.2 Measures of Variability -- 3.6.4 Validity
and Reliability of Measurement -- 3.6.5 Measurement Error -- 3.7
Accuracy versus Precision and the Limits of Software Measurement --
3.7.1 Summary -- 3.7.2 Problems -- 3.7.3 Project -- References -- 4.
Measuring the Size of Software -- 4.1 Physical Measurements of
Software -- 4.1.1 Measuring Lines of Code -- 4.1.1.1 Code Counting
Checklists -- 4.1.2 Language Productivity Factor -- 4.1.3 Counting
Reused and Refactored Code -- 4.1.4 Counting Non-Procedural Code
Length -- 4.1.5 Measuring the Length of Specifications and Design --
4.2 Measuring Functionality -- 4.2.1 Function Points -- 4.2.1.1
Counting Function Points -- 4.2.2 Function Point Counting Exercise --
4.2.3 Converting Function Points to Physical Size -- 4.2.4 Converting
Function Points to Effort -- 4.2.5 Other Function Point Engineering
Rules -- 4.2.6 Function Point Pros and Cons -- 4.3 Feature Points --
4.4 Size Summary -- 4.5 Size Exercises -- 4.6 Theater Tickets Project.
References -- 5. Measuring Complexity -- 5.1 Structural Complexity --
5.1.1 Size as a Complexity Measure -- 5.1.1.1 System Size and
Complexity -- 5.1.1.2 Module Size and Complexity -- 5.1.2 Cyclomatic
Complexity -- 5.1.3 Halstead's Metrics -- 5.1.4 Information Flow
Metrics -- 5.1.5 System Complexity -- 5.1.5.1 Maintainability Index --
5.1.5.2 The Agresti-Card System Complexity Metric -- 5.1.6 Object-
Oriented Design Metrics -- 5.1.7 Structural Complexity Summary --
5.2 Conceptual Complexity -- 5.3 Computational Complexity -- 5.4
Complexity Metrics Summary -- 5.5 Complexity Exercises -- 5.6
Projects -- References -- 6. Estimating Effort -- 6.1 Effort Estimation -
Where are we? -- 6.2 Software Estimation Methodologies and Models
-- 6.2.1 Expert Estimation -- 6.2.1.1 Work and Activity Decomposition
-- 6.2.1.2 System Decomposition -- 6.2.1.3 The Delphi Methods --
6.2.2 Using Benchmark Size Data -- 6.2.2.1 Lines of Code Benchmark
Data -- 6.2.2.2 Function Point Benchmark Data -- 6.2.3 Estimation by
Analogy -- 6.2.3.1 Traditional Analogy Approach -- 6.2.3.2 Analogy
Summary -- 6.2.4 Proxy Point Estimation Methods -- 6.2.4.1 Meta-
Model for Effort Estimation -- 6.2.4.2 Function Points -- 6.2.4.2.1
COSMIC Function Points -- 6.2.4.3 Object Points -- 6.2.4.4 Use Case
Sizing Methodologies -- 6.2.4.4.1 Use Case Points Methodology --
6.2.4.4.2 Example: Use Case Point Methodology Example: Home
Security System -- 6.2.4.4.3 Use Case Point Methodology Effectiveness
-- 6.2.5 Custom Models -- 6.2.6 Algorithmic Models -- 6.2.6.1 Manual
Models -- 6.2.6.2 Estimating Project Duration -- 6.2.6.3 Tool Based
Models -- 6.3 Combining Estimates -- 6.4 Estimating Issues -- 6.4.1
Targets vs. Estimates -- 6.4.2 The Limitations of Estimation - Why? --
6.4.3 Estimate Uncertainties -- 6.5 Estimating Early and Often -- 6.6
Estimation Summary -- 6.7 Estimation Problems -- 6.8 Estimation
Project - Theater Tickets -- References -- 7. In Praise of Defects:
Defects and Defect Metrics -- 7.1 Why study and measure defects?.
7.2 Faults vs. failures -- 7.3 Defect Dynamics and Behaviors -- 7.3.1
Defect Arrival Rates -- 7.3.2 Defects vs. Effort -- 7.3.3 Defects vs.
Staffing -- 7.3.4 Defect Arrival Rates vs. Code Production Rate -- 7.3.5
Defect Density vs. Module Complexity -- 7.3.6 Defect Density vs.
System Size -- 7.4 Defect Projection Techniques and Models -- 7.4.1
Dynamic Defect Models -- 7.4.1.1 Rayleigh Models -- 7.4.1.2
Exponential and S-Curves Arrival Distribution Models -- 7.4.1.3
Empirical Data and Recommendations for Dynamic Models -- 7.4.2
Static Defect Models -- 7.4.2.1 Defect Insertion and Removal Model --
7.4.2.2 Defect Removal Efficiency - A Key Metric -- 7.4.2.3 Static
Defect Model Tools -- 7.5 Additional Defect Benchmark Data -- 7.5.1



Defect Data By Application Domain -- 7.5.2 Cumulative Defect Removal
Efficiency (DRE) Benchmark -- 7.5.3 SEI Levels and Defect Relationships
-- 7.5.4 Latent Defects -- 7.5.5 Other Defects Benchmarks and a Few
Recommendations+ -- 7.6 Cost Effectiveness of Defect Removal by
Phase -- 7.7 Defining and Using Simple Defect Metrics: An example --
7.8 Some Paradoxical Patterns for Customer Reported Defects -- 7.9
Defect Summary -- 7.10 Problems -- 7.11 Projects -- 7.12 Answers to
the initial questions -- References -- 8. Software Reliability
Measurement and Prediction -- 8.1 Why study and measure software
reliability? -- 8.2 What is reliability? -- 8.3 Faults and failures -- 8.4
Failure Severity Classes -- 8.5 Failure Intensity -- 8.6 The Cost of
Reliability -- 8.7 Software Reliability Theory -- 8.7.1 Uniform and
Random Distributions -- 8.7.2 The probability of failure during a time
interval -- 8.7.3 F(t) - The Probability of Failure by time t -- 8.7.4 R(t) -
The Reliability Function -- 8.7.5 Reliability Theory Summarized -- 8.8
Reliability Models -- 8.8.1 Types of Models -- 8.8.2 Predicting Number
of Defects Remaining -- 8.8.3 Reliability Growth Models -- 8.8.4 Model
Summary -- 8.9 Failure Arrival Rates -- 8.9.1 Predicting Failure Arrival
Rates Using Historical Data.
8.9.2 Engineering Rules for MTTF -- 8.9.3 Musa's Algorithm -- 8.9.4
Operational Profile Testing -- 8.9.5 Predicting Reliability Summary --
8.10 But when do I ship? -- 8.11 System Configurations: Probability
and Reliability -- 8.12 Answers to Initial Question -- 8.13 Reliability
Summary -- 8.14 Reliability Exercises -- 8.15 Reliability Project --
References -- 9. Response Time and Availability -- 9.1 Response Time
Measurements -- 9.2 Availability -- 9.2.1 Availability Factors -- 9.2.2
Outage Scope -- 9.2.3 Complexities in Measuring Availability -- 9.2.4
Software Rejuvenation -- 9.2.4.1 Software Aging -- 9.2.4.2
Classification of Faults -- 9.2.4.3 Software Rejuvenation Techniques --
9.2.4.4 Impact of Rejuvenation on Availability -- 9.3 Summary -- 9.4
Problems -- 9.5 Project -- References -- 10. Measuring Progress --
10.1 Project Milestones -- 10.2 Code Integration -- 10.3 Testing
Progress -- 10.4 Defects Discovery and Closure -- 10.4.1 Defect
Discovery -- 10.4.2 Defect Closure -- 10.5 Process Effectiveness --
10.6 Summary -- References -- Problems -- 11. Outsourcing -- 11.1
The "O" Word -- 11.2 Defining Outsourcing -- 11.3 Risks Management
and Outsourcing -- 11.4 Metrics and the Contract -- 11.5 Summary --
References -- Exercises -- Problems -- Chapter 11 Sidebar -- 12.
Financial Measures for the Software Engineer -- 12.1 It's All About the
Green -- 12.2 Financial Concepts -- 12.3 Building the Business Case
-- 12.3.1 Understanding Costs -- 12.3.1.1 Salaries -- 12.3.1.2
Overhead Costs -- 12.3.1.3 Risk Costs -- 12.3.1.3.1 Identifying Risk
-- 12.3.1.3.2 Assessing Risks -- 12.3.1.3.3 Planning for Risk --
12.3.1.3.4 Monitoring Risk -- 12.3.1.4 Capital versus Expense --
12.3.2 Understanding Benefits -- 12.3.3 Business Case Metrics --
12.3.3.1 Return on Investment -- 12.3.3.2 Pay-Back Period -- 12.3.3.3
Cost/Benefit Ratio -- 12.3.3.4 Profit & Loss Statement -- 12.3.3.5 Cash
Flow -- 12.3.3.6 Expected Value -- 12.4 Living the Business Case --
12.5 Summary -- References -- Problems.
Projects -- 13. Benchmarking -- 13.1 What is Benchmarking -- 13.2
Why Benchmark -- 13.3 What to Benchmark -- 13.4 Identifying and
Obtaining a Benchmark -- 13.5 Collecting Actual Data -- 13.6 Taking
Action -- 13.7 Current Benchmarks -- 13.8 Summary -- References --
Problems -- Projects -- 14. Presenting Metrics Effectively to
Management -- 14.1 Decide on the Metrics -- 14.2 Draw the Picture --
14.3 Create a Dashboard -- 14.4 Drilling for Information -- 14.5
Example for the Big Cheese -- 14.6 Evolving Metrics -- 14.7 Summary
-- References -- Problems -- Project -- Index.



Sommario/riassunto This book serves as a practical guide to metrics and quantitative
software estimation, beginning with the foundations of measurement
and metrics, and then focuses on techniques and tools for estimation
of the required effort and the resulting quality of a software project.


