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This title provides a comprehensive survey over the subject of
probabilistic combinatorial optimization, discussing probabilistic
versions of some of the most paradigmatic combinatorial problems on
graphs, such as the maximum independent set, the minimum vertex
covering, the longest path and the minimum coloring. Those who
possess a sound knowledge of the subject mater will find the title of
great interest, but those who have only some mathematical familiarity
and knowledge about complexity and approximation theory will also
find it an accessible and informative read.


