Record Nr. UNINA9911018976103321 Main group metals in organic synthesis / / edited by Hisahi Yamamoto **Titolo** and Koichiro Oshima Pubbl/distr/stampa Weinheim, Germany, : Wiley-VCH, 2004 **ISBN** 9786610520442 9781280520440 1280520442 9783527605354 3527605355 9783527602605 3527602607 Descrizione fisica 1 online resource (907 p.) Altri autori (Persone) YamamotoHisashi OshimaKoichiro <1947-> Disciplina 547.05 Organometallic compounds - Synthesis Soggetti Organic compounds Lingua di pubblicazione Inglese **Formato** Materiale a stampa Livello bibliografico Monografia Note generali Description based upon print version of record. Nota di bibliografia Includes bibliographical references and index. Main Group Metals in Organic Synthesis; Contents; Preface; List of Nota di contenuto Contributors; Volume 1; 1 Lithium in Organic Synthesis; 1.1 Introduction; 1.2 Nature of Organolithium Compounds; 1.2.1 Overview; 1.2.2 Structural Features; 1.2.3 Configurational Stability; 1.2.4 Titration of Organolithium Compounds; 1.3 Methods for the Preparation of Organolithium Compounds; 1.3.1 Overview; 1.3.2 Reductive Lithiation using Lithium Metal; 1.3.3 Preparation of Organolithium Compounds from Another Organolithium Compounds; 1.3.3.1 Deprotonation; 1.3.3.2 Halogen-Lithium Exchange; 1.3.3.3 Transmetallation 1.3.3.4 Carbolithiation1.3.3.5 Miscellaneous; 1.4 Methods for Construction of Carbon Frameworks by Use of Organolithium Compounds: 1.4.1 Overview: 1.4.2 Stereospecificity: 1.4.3 Synthetic Application; 1.4.3.1 C-C Bond Formation: Conversion of C-Li to Halogen-Li; 1.4.3.2 C-C Bond Formation: Conversion of C-Li to O-Li;

1.4.3.3 C-C Bond Formation: Conversion of C-Li to N-Li; 1.5

References; 2 Rubidium and Cesium in Organic Synthesis; 2.1 Introduction; 2.2 Organo-, Silyl-, Germyl-, and Stannylmetal; 2.3 Fluoride Ion Source; 2.3.1 Nucleophilic Fluorination; 2.3.2 Desilylation Reactions

2.3.2.1 Carbanion Equivalent Formation2.3.2.2 Desilylation-Elimination; 2.4 Electrophilic Fluorination - Cesium Fluorosulfate; 2.5 Cesium Salts as Bases; 2.6 Cesium Enolate; 2.7 Catalytic Use; 2.8 Conclusion; 2.9 References; 3 Magnesium in Organic Synthesis; 3.1 Introduction; 3.2 Preparation of Organomagnesium Compounds; 3.2.1 Preparation from Alkyl Halides and Mg Metal; 3.2.2 Preparation with Rieke Magnesium; 3.2.3 Transmetalation; 3.2.4 Sulfoxide-Magnesium Exchange (Ligand Exchange Reaction of Sulfoxides with Grignard Reagent); 3.2.5 Hydromagnesation

3.2.6 Metalation (Deprotonation from Strong Carbon Acids)3.2.7 Other Preparative Methods; 3.3 Reaction of Organomagnesium Compounds; 3.3.1 Reaction with Organomagnesium Amides; 3.3.1.1 Preparation of Magnesium Monoamides and Bisamides; 3.3.1.2 Reaction with Organomagnesium Amide; 3.3.2 Cp(2)TiCl(2)- or Cp(2)ZrCl(2)-catalyzed Reaction with Grignard Reagents; 3.3.3 Substitution at Carbon by Organomagnesium Compounds; 3.3.4 Addition to Carbon-Carbon Multiple Bonds; 3.3.5 Addition of Organomagnesium Compounds to Carbonyl Groups; 3.4 Halogen-Magnesium Exchange Reactions

3.4.1 Practical Examples of Halogen-Magnesium Exchange Reactions3.
4.1.1 Perfluoro Organomagnesium Reagents; 3.4.1.2 Polyhalogenated Arylmagnesium Reagents; 3.4.1.3 Exchange of Polyhalomethane Derivatives; 3.4.1.4 Preparation of Magnesiated Nitrogen-Heterocycles; 3.4.1.5 Formation of Enolates by Halogen-Magnesium Exchange; 3.4.1.6 Miscellaneous Reactions; 3.4.2 iPrMgBr-induced Halogen-Magnesium Exchange for the Preparation of Polyfunctional Organomagnesium Reagents; 3.4.2.1 Exchange Reaction of Aryl Halides; 3.4.2.2 Exchange Reaction of Heterocyclic Halides 3.4.2.3 Exchange Reaction of Alkenyl Halides

Sommario/riassunto

This is the first handbook to cover in detail all aspects of this fascinating field of chemistry. In this handy two-volume set, readers will instantly find the information they need, clearly structured according to the individual metals in the main groups, hitherto only accessible after much time-consuming research. The result is in indispensable aid for everyday work in the lab. Alongside all the classical organic reactions, this book focuses on the modern variations as well as novel, current reactions in organic synthesis that are closely linked to main group elements - both stoechiometri