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This book explains the technologies and tools that underpin GNNs,
offering a clear and practical guide to their industrial applications and
use cases. AI engineers, data scientists, and researchers in AI and
graph theory will find detailed insights into the latest trends and
innovations driving this dynamic field. With practical chapters
demonstrating how GNNs are reshaping various industry verticals—and
how they complement advances in generative, agentic, and physical
AI—this book is an essential resource for understanding and leveraging
their potential. The neural network paradigm has surged in popularity
for its ability to uncover hidden patterns within vast datasets. This
transformative technology has spurred global innovations, particularly
through the evolution of deep neural networks (DNNs). Convolutional
neural networks (CNNs) have revolutionized computer vision, while
recurrent neural networks (RNNs) and their advanced variants have
automated natural language processing tasks such as speech
recognition, translation, and content generation. Traditional DNNs
primarily handle Euclidean data, yet many real-world problems involve
non-Euclidean data—complex relationships and interactions naturally
represented as graphs. This challenge has driven the rise of graph
neural networks (GNNs), an approach that extends deep learning into
new domains. GNNs are powerful models designed to work with graph-
structured data, where nodes represent individual data points and
edges denote the relationships between them. Several variants have
emerged: Graph Convolutional Networks (GCNs): These networks learn
from a node’s local neighborhood by aggregating information from
adjacent nodes, updating the node’s representation in the process.
Graph Attentional Networks (GATs): By incorporating attention
mechanisms, GATs focus on the most relevant neighbors during
aggregation, enhancing model performance. Graph Recurrent Networks
(GRNs): These networks combine principles from RNNs with graph
structures to capture dynamic relationships within the data. GNNs are
applied in a variety of advanced use cases, including node
classification, link prediction, graph clustering, anomaly detection,
recommendation systems, and also in natural language processing and
computer vision. They help forecast traffic patterns, analyze molecular
structures, verify programs, predict social influence, model electronic
health records, and map brain networks.


