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Gain a deep understanding of concurrency and learn how to leverage
concurrent algorithms to build high-throughput data processing
applications, network servers and clients that scale. Key Features Learn
about the Go concurrency primitives, Go memory model, and common
concurrency patterns Develop the insights on how to model solutions
to real-life problems using concurrency Explore practical techniques to
analyze how concurrent programs behave Book Description The Go
language has been gaining momentum due to its treatment of
concurrency as a core language feature, making concurrent
programming more accessible than ever. However, concurrency is still
an inherently difficult skill to master, since it requires the development
of the right mindset to decompose problems into concurrent
components correctly. This book will guide you in deepening your
understanding of concurrency and show you how to make the most of
its advantages. You'll start by learning what guarantees are offered by
the language when running concurrent programs. Through multiple
examples, you will see how to use this information to develop
concurrent algorithms that run without data races and complete
successfully. You'll also find out all you need to know about multiple
common concurrency patterns, such as worker pools, asynchronous
pipelines, fan-in/fan-out, scheduling periodic or future tasks, and

error and panic handling in goroutines. The central theme of this book
is to give you, the developer, an understanding of why concurrent
programs behave the way they do, and how they can be used to build
correct programs that work the same way in all platforms. By the time
you finish the final chapter, you'll be able to develop, analyze, and
troubleshoot concurrent algorithms written in Go. What you will learn
Understand basic concurrency concepts and problems Learn about Go
concurrency primitives and how they work Learn about the Go memory
model and why it is important Understand how to use common
concurrency patterns See how you can deal with errors in a concurrent
program Discover useful techniques for troubleshooting Who this book
is for If you are a developer with basic knowledge of Go and are looking
to gain expertise in highly concurrent backend application
development, then this book is for you. Intermediate Go developers
who want to make their backend systems more robust and scalable will
also find plenty of useful information. Prior exposure Go is a
prerequisite.



