1. Record Nr.

Autore
Titolo

Pubbl/distr/stampa

ISBN

Edizione

Descrizione fisica

Disciplina
Soggetti

Lingua di pubblicazione
Formato

Livello bibliografico
Note generali

Nota di contenuto

UNINA9911008982603321
Serdar Burak

Effective Concurrency in Go : Develop, Analyze, and Troubleshoot High
Performance Concurrent Applications with Ease

Birmingham : , : Packt Publishing, Limited, , 2023
©2023

9781804615980
1804615986

[1st ed.]
1 online resource (212 pages)

005.133

Go (Computer program language)
Computer multitasking

Inglese

Materiale a stampa

Monografia

Description based upon print version of record.

Cover -- Title Page -- Copyright and Credit -- Dedicated --
Contributors -- Table of Contents -- Preface -- Chapter 1:
Concurrency - A High-Level Overview -- Technical Requirements --
Concurrency and parallelism -- Shared memory versus message
passing -- Atomicity, race, deadlocks, and starvation -- Summary --
Question -- Further reading -- Chapter 2: Go Concurrency Primitives
-- Technical Requirements -- Goroutines -- Channels -- Mutex --
Wait groups -- Condition variables -- Summary -- Questions --
Chapter 3: The Go Memory Model -- Why a memory model is necessary
-- The happened-before relationship between memory operations --
Synchronization characteristics of Go concurrency primitives --
Package initialization -- Goroutines -- Channels -- Mutexes -- Atomic
memory operations -- Map, Once, and WaitGroup -- Summary --
Further reading -- Chapter 4: Some Well-Known Concurrency
Problems -- Technical Requirements -- The producer-consumer
problem -- The dining philosophers problem -- Rate limiting --
Summary -- Chapter 5: Worker Pools and Pipelines -- Technical
Requirements -- Worker pools -- Pipelines, fan-out, and fan-in --
Asynchronous pipeline -- Fan-out/fan-in -- Fan-in with ordering --
Summary -- Questions -- Chapter 6: Error Handling -- Error handling
-- Pipelines -- Servers -- Panics -- Summary -- Chapter 7: Timers and



Sommario/riassunto

Tickers -- Technical Requirements -- Timers - running something later
-- Tickers - running something periodically -- Heartbeats -- Summary

-- Chapter 8: Handling Requests Concurrently -- Technical
Requirements -- The context, cancelations, and timeouts -- Backend
services -- Distributing work and collecting results -- Semaphores -
limiting concurrency -- Streaming data -- Dealing with multiple

streams -- Summary -- Chapter 9: Atomic Memory Operations --
Technical Requirements -- Memory guarantees -- Compare and swap.
Practical uses of atomics -- Counters -- Heartbeat and progress meter
-- Cancellations -- Detecting change -- Summary -- Chapter 10:
Troubleshooting Concurrency Issues -- Technical Requirements --
Reading stack traces -- Detecting failures and healing -- Debugging
anomalies -- Summary -- Further reading -- Index -- Other Books You
May Enjoy.

Gain a deep understanding of concurrency and learn how to leverage
concurrent algorithms to build high-throughput data processing
applications, network servers and clients that scale. Key Features Learn
about the Go concurrency primitives, Go memory model, and common
concurrency patterns Develop the insights on how to model solutions
to real-life problems using concurrency Explore practical techniques to
analyze how concurrent programs behave Book Description The Go
language has been gaining momentum due to its treatment of
concurrency as a core language feature, making concurrent
programming more accessible than ever. However, concurrency is still
an inherently difficult skill to master, since it requires the development
of the right mindset to decompose problems into concurrent
components correctly. This book will guide you in deepening your
understanding of concurrency and show you how to make the most of
its advantages. You'll start by learning what guarantees are offered by
the language when running concurrent programs. Through multiple
examples, you will see how to use this information to develop
concurrent algorithms that run without data races and complete
successfully. You'll also find out all you need to know about multiple
common concurrency patterns, such as worker pools, asynchronous
pipelines, fan-in/fan-out, scheduling periodic or future tasks, and

error and panic handling in goroutines. The central theme of this book
is to give you, the developer, an understanding of why concurrent
programs behave the way they do, and how they can be used to build
correct programs that work the same way in all platforms. By the time
you finish the final chapter, you'll be able to develop, analyze, and
troubleshoot concurrent algorithms written in Go. What you will learn
Understand basic concurrency concepts and problems Learn about Go
concurrency primitives and how they work Learn about the Go memory
model and why it is important Understand how to use common
concurrency patterns See how you can deal with errors in a concurrent
program Discover useful techniques for troubleshooting Who this book
is for If you are a developer with basic knowledge of Go and are looking
to gain expertise in highly concurrent backend application
development, then this book is for you. Intermediate Go developers
who want to make their backend systems more robust and scalable will
also find plenty of useful information. Prior exposure Go is a
prerequisite.



