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Sommario/riassunto

-- 29 Suite.

This book, now in a revised and extended third edition, provides a
comprehensive and accessible introduction to modern axiomatic set
theory. After an overview of basic notions in combinatorics and first-
order logic, and discussing in great detail the axioms of set theory, the
author outlines in the second part the main topics of classical set
theory, including Ramsey theory and the axiom of choice. As an
application of the axiom of choice, a complete proof of Robinson's
construction for doubling a ball by dividing it into only five parts is
given. For the new edition, the chapter on permutation models has
been extended, and recent results in set theory without the axiom of
choice and about cardinal characteristics have been added. The third
part explains the sophisticated technique of forcing from scratch, now
including more details about iterated forcing. The technique is then
used to show that certain statements are neither provable nor
disprovable from the axioms of set theory. In particular, it is shown
that both Martin's Axiom and Suslin's Hypothesis are independent of
the axioms of set theory. The final part, with a new chapter on Laver
forcing, is mainly concerned with consistency results obtained by
iterations of forcing notions such as Cohen forcing, Sacks forcing, and
Mathias forcing. The part begins with an extended chapter on
countable support iterations of proper forcing notions, now also
including proofs of some preservation theorems such as preservation
of properness and of certain ultrafilters. In the following chapters,
various consistency results concerning possible relations between
cardinal characteristics and the existence of Ramsey ultrafilters are
presented. For example, a detailed proof of Shelah’s astonishing
construction of a model with finitely many Ramsey ultrafilters is given.
Written for graduate students in axiomatic set theory, Combinatorial
Set Theory will appeal to all researchers interested in the foundations
of mathematics. With extensive reference lists, historical remarks, and
related results at the end of the chapters, this book is also suitable for
self-study.


