
UNINA99108299097033211. Record Nr.

Titolo Automated defect prevention : best practices in software management /
/ Dorota Huizinga, Adam Kolawa

Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Interscience : , c2007

ISBN 1-281-03229-8
9786611032296
0-470-16517-0
0-470-16516-2

Descrizione fisica 1 online resource (454 p.)

Altri autori (Persone) KolawaAdam

Disciplina 005

Soggetti Software failures - Prevention - Data processing
Software maintenance - Data processing
Debugging in computer science - Automatic control
Computer programs - Testing - Data processing
Computer programs - Correctness

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Preface -- Features and Organization -- Practice Descriptions --
Intended audience -- Acknowledgements -- Permissions -- Disclaimer
-- 1. The Case for Automated Defect Prevention -- 1.1 What is ADP? --
1.2 What are the goals of ADP? -- 1.2.1 People: Stimulated and
Satisfied -- 1.2.2 Product: High Quality -- 1.2.3 Organization:
Increased Productivity and Operational Efficiency -- 1.2.4 Process:
Controlled, Improved, and Sustainable -- 1.2.5 Project: Managed
through Informed Decision Making -- 1.3 How is ASDP implemented?
-- 1.3.1 Principles -- 1.3.2 Practices -- 1.3.3 Policies -- 1.3.4 Defect
Prevention Mindset -- 1.3.5 Automation -- 1.4 From the waterfall to
modern software development process models -- 1.5 Acronyms -- 1.6
Glossary -- 1.7 References -- 1.8 Exercises -- 2. Principles of
Automated Defect Prevention -- 2.1 Introduction -- 2.2 Defect
Prevention: Definition and Benefits -- 2.3 Historical Perspective: Defect
Analysis and Prevention in Auto Industry - What Happened to Deming?
-- 2.4 Principles of Automated Defect Prevention -- 2.4.1 Principle 1:

Autore Huizinga Dorota

Materiale a stampa

Monografia



Establishment of Infrastructure: "Build a strong foundation through
integration of people and technology" -- 2.4.2 Principle 2: Application
of General Best Practices: "Learn from others' mistakes" -- 2.4.3
Principle 3: Customization of Best Practices: "Learn from your own
mistakes" -- 2.4.4 Principle 4: Measurement and Tracking of Project
Status: "Understand the past and present to make decisions about the
future" -- 2.4.5 Principle 5: Automation: "Let the computer do it" --
2.4.6 Principle 6: Incremental Implementation of ADP's Practices and
Policies -- 2.5 Automated Defect Prevention based Software
Development Process Model -- 2.6 Examples -- 2.6.1 Focus on Root
Cause Analysis of a Defect -- 2.6.2 Focus on Infrastructure -- 2.6.3
Focus on Customized Best Practice -- 2.6.4 Focus on Measurements of
Project Status -- 2.7 Acronyms -- 2.8 Glossary -- 2.9 References --
2.10 Exercises.
3. Initial Planning and Infrastructure -- 3.1 Introduction -- 3.2 Initial
Software Development Plan -- 3.2.1 Product -- 3.2.2 People -- 3.2.3
Technology -- 3.2.4 Process -- 3.3 Best Practices for Creating People
Infrastructure -- 3.3.1 Defining Groups -- 3.3.2 Determining a
Location for Each Group's Infrastructure -- 3.3.3 Defining People Roles
-- 3.3.4 Establishing Training Program -- 3.3.5 Cultivating a Positive
Group Culture -- 3.4 Best Practices for Creating Technology
Infrastructure -- 3.4.1 Automated Reporting System -- 3.4.2 Policy for
Use of Automated Reporting System -- 3.4.3 Minimum Technology
Infrastructure -- 3.4.4 Intermediate Technology Infrastructure -- 3.4.5
Expanded Technology Infrastructure -- 3.5 Integrating People and
Technology -- 3.6 Human Factors and Concerns -- 3.7 Examples --
3.7.1 Focus on Developer Ideas -- 3.7.2 Focus on Reports Generated
by the Minimum Infrastructure -- 3.8 Acronyms -- 3.9 Glossary --
3.10 References -- 3.11 Exercises -- 4. Requirements Specification and
Management -- 4.1 Introduction -- 4.2 Best Practices for Gathering
and Organizing Requirements -- 4.2.1 Creating the Product Vision and
Scope Document -- 4.2.2 Gathering and Organizing Requirements --
4.2.3 Prioritizing Requirements -- 4.2.4 Developing Use Cases -- 4.2.5
Creating a Prototype to Elicit Requirements -- 4.2.6 Creating
Conceptual Test Cases -- 4.2.7 Requirements Documents Inspection --
4.2.8 Managing Changing Requirements -- 4.3 Best Practices in
Different Environments -- 4.3.1 Existing Versus New Software Project
-- 4.3.2 In-House Versus Outsourced Development Teams -- 4.4
Policy for Use of the Requirements Management System -- 4.4.1 The
project manager should approve the final version of the vision and
scope document, which should be entered into, and tracked in, the
requirements management system -- 4.4.2 The architect should
approve the final version of the requirements specification (SRS)
document. The requirements from SRS should be entered into, and
their changes tracked in, the requirements management system.
4.4.3 The architect or lead developer should define the scope and test
requirements for each feature to be implemented, and then enter those
details in the requirements management system -- 4.4.4 The developer
should create test cases for each feature she is assigned to implement,
and add those test cases to the requirements management system --
4.4.5 After the developer implements a feature, she should modify the
test cases to verify the new feature, then, once the tests pass, she
should mark the feature as "implemented" -- 4.4.6 Measurements
Related to Requirement Management System -- 4.4.7 Tracking of Data
Related to the Requirements Management System -- 4.5 Examples --
4.5.1 Focus on Customized Best Practice -- 4.5.2 Focus on Monitoring
and Managing Requirement Priorities -- 4.5.3 Focus on Change
Requests -- 4.6 Acronyms -- 4.7 Glossary -- 4.8 References -- 4.9



Exercises -- 5. Extended Planning and Infrastructure -- 5.1
Introduction -- 5.2 Software Development Plan -- 5.3 Defining Project
Objectives -- 5.4 Defining Project Artifacts and Deliverables -- 5.4.1
The Vision and Scope document -- 5.4.2 SRS, describing the product
key features -- 5.4.3 Architectural and detailed design documents and
models -- 5.4.4 List of COTS (Commercial-Off-the-Shelf-Components)
used -- 5.4.5 Source and executable code -- 5.4.6 Test plan -- 5.4.7
Acceptance plan -- 5.4.8 Periodic reports generated by the reporting
system -- 5.4.9 Deployment plan -- 5.4.10 User and operational
manuals -- 5.4.11 Customer training plan -- 5.5 Selecting a Software
Development Process Model -- 5.6 Defining Defect Prevention Process
-- 5.7 Managing Risk -- 5.8 Managing Change -- 5.9 Defining Work
Breakdown Structure (WBS) - An Iterative Approach -- 5.10 Best
Practices for Estimating Project Effort -- 5.10.1 Estimation by Using
Elements of Wideband Delphi -- 5.10.2 Estimation by Using Effort
Analogy -- 5.10.3 Estimation by Using Parametric Models -- 5.10.4
Estimations of Using COTS and Code Reuse.
5.10.5 Estimation Quality Factor and the Iterative Adjustments of
Estimates -- 5.11 Best Practices for Preparing the Schedule -- 5.12
Measurement and Tracking for Estimation -- 5.13 Identifying
Additional Resource Requirements -- 5.13.1 Extending the Technology
Infrastructure -- 5.13.2 Extending the People Infrastructure -- 5.14
Examples -- 5.14.1 Focus on the Root Cause of a Project Scheduling
Problem -- 5.14.2 Focus on Organizing and Tracking Artifacts --
5.14.3 Focus on Scheduling and Tracking Milestones -- 5.15 Acronyms
-- 5.16 Glossary -- 5.17 References -- 5.18 Exercises -- 6.
Architectural and Detailed Design -- 6.1 Introduction -- 6.2 Best
Practices for Design of System Functionality and its Quality Attributes
-- 6.2.1 Identifying Critical Attributes of Architectural Design -- 6.2.2
Defining the Policies for Design of Functional and Non-functional
Requirements -- 6.2.3 Applying Design Patterns -- 6.2.4 Service
Oriented Architecture -- 6.2.5 Mapping Requirements to Modules --
6.2.6 Designing Module Interfaces -- 6.2.7 Modeling Modules and their
Interfaces with UML -- 6.2.8 Defining Application Logic -- 6.2.9
Refining Test Cases -- 6.2.10 Design Document Storage and Inspection
-- 6.2.11 Managing Changes in Design -- 6.3 Best Practices for Design
of Graphical User Interface -- 6.3.1 Identifying Critical Attributes of
User Interface Design -- 6.3.2 Defining the User Interface Design Policy
-- 6.3.3 Identifying Architectural Patterns Applicable to the User
Interface Design -- 6.3.4 Creating Categories of Actions -- 6.3.5
Dividing Actions into Screens -- 6.3.6 Prototyping the Interface --
6.3.7 Testing the Interface -- 6.4 Examples -- 6.4.1 Focus on Module
Assignments and Design Progress -- 6.4.2 Focus on the Number of Use
Cases per Module -- 6.4.3 Focus on Module Implementation Overview
-- 6.4.4 Focus on Customized Best Practice for GUI Design -- 6.5
Acronyms -- 6.6 Glossary -- 6.7 References -- 6.8 Exercises -- 7.
Construction.
7.1 Introduction -- 7.2 Best Practices for Code Construction -- 7.2.1
Applying coding standards throughout development -- 7.2.2 Applying
the test-first approach at the service and module implementation level
-- 7.2.3 Implementing service contracts and/or module interfaces
before their internal functionality -- 7.2.4 Applying Test Driven
Development for algorithmically complex and critical code units --
7.2.5 Conducting white box unit testing after implementing each unit
and before checking the code to the source control system -- 7.2.6
Verifying code consistency with the requirements and design -- 7.3
Policy for Use of the Code Source Control System -- 7.3.1 Each
developer should have a local copy (sandbox) of files related to her



current work -- 7.3.2 Each team should have a sandbox with copies of
all files needed to build each application -- 7.3.3 Parallel development
practices should be well defined and understood by participating
developers -- 7.3.4 Each developer should check out only code that
she is actively modifying -- 7.3.5 Each developer should check in to
source control only code that complies with the required coding
standards and passes the designated quality checks -- 7.3.6 Each
developer should clean the sandbox and re-shadow relevant files after
major changes -- 7.3.7 The entire team should store code for different
software versions in physically independent locations of the source
control systems -- 7.3.8 The entire team should use versioning
features only for small variations within one software version -- 7.3.9
Measurements Related to Source Control -- 7.3.10 Tracking of Source
Control Data -- 7.4 Policy for Use of Automated Build -- 7.4.1 Creating
a special build account -- 7.4.2 Cleaning the build area before each
build -- 7.4.3 Shadowing or cloning the source code to the build
directory -- 7.4.4 Building the application at regularly scheduled
intervals after cleaning the build directory and shadowing or cloning
the source code.
7.4.5 Completely automating the build process -- 7.4.6 Creating
hierarchies for Makefiles and/or other build files -- 7.4.7
Parameterizing scripts and build files -- 7.4.8 For n-tier applications,
establishing and creating a build on a staging area as well as a
production area -- 7.4.9 Fully integrating automated builds with the
source control system -- 7.4.10 Integrating testing into the automated
build process -- 7.4.11 Measurements Related to Automated Builds --
7.4.12 Tracking of Data Related to Automated Builds -- 7.5 Examples
-- 7.5.1 Focus on a Customized Coding Standard Policy -- 7.5.2 Focus
on Features/Tests Reports -- 7.6 Acronyms -- 7.7 Glossary -- 7.8
References -- 7.9 Exercises -- 8. Testing and Defect Prevention -- 8.1
Introduction -- 8.2 Best Practices for Testing and Code Review -- 8.2.1
Conducting White Box Unit Testing: Bottom-Up Approach -- 8.2.2
Conducting Black Box Testing and Verifying the Convergence of Top
Down and Bottom Up Tests -- 8.2.3 Conducting Code Reviews as a
Testing Activity -- 8.2.4 Conducting Integration Testing -- 8.2.5
Conducting System Testing -- 8.2.6 Conducting Regression Testing --
8.2.7 Conducting Acceptance Testing -- 8.3 Defect Analysis and
Prevention -- 8.4 Policy for Use of Problem Tracking System -- 8.4.1
During development, problem tracking systems should be used to store
only severe defects, feature requests and developer ideas -- 8.4.2 After
a code freeze, the problem tracking system should be used to record
all defect reports and all feature requests -- 8.4.3 During release
planning, recorded feature requests should be prioritized and their
implementation scheduled -- 8.4.4 Measurements of Data Related to
the Problem Tracking System -- 8.4.5 Tracking of Data Related to
Problem Tracking System -- 8.5 Policy for Use of Regression Testing
System -- 8.5.1 Configuring the regression system so that it provides
detailed result information -- 8.5.2 Executing regression tests
automatically after each build.
8.5.3 Reviewing regression test results at the beginning of each work
day and updating the test suite as needed -- 8.5.4 Using regression
results to assess the deployment readiness of the system -- 8.5.5
Measurements Related to the Regression Testing System -- 8.5.6
Tracking of Data Related to the Regression Testing System -- 8.6
Examples -- 8.6.1 Focus on Defect Tracking Reports -- 8.6.2 Focus on
Test Type Reports -- 8.6.3 Example of a Root Cause Analysis of a
Design and Testing Defect -- 8.7 Acronyms -- 8.8 Glossary -- 8.9
References -- 8.10 Exercises -- 9. Trend Analysis and Deployment --



9.1 Introduction -- 9.2 Trends in Process Control -- 9.2.1 Process
Variations -- 9.2.2 Process Stabilization -- 9.2.3 Process Capability --
9.3 Trends in Project Progress -- 9.3.1 Analyzing
Features/Requirements Implementation Status -- 9.3.2 Analyzing
Source Code Growth -- 9.3.3 Analyzing Test Results -- 9.3.4 Analyzing
Defects -- 9.3.5 Analyzing Cost and Schedule -- 9.4 Best Practices for
Deployment and Transition -- 9.4.1 Deployment to a Staging System
-- 9.4.2 Automation of the Deployment Process -- 9.4.3 Assessing
Release Readiness -- 9.4.4 Release: Deployment to the Production
System -- 9.4.5 Non-intrusive Monitoring -- 9.5 Acronyms -- 9.6
Glossary -- 9.7 References -- 9.8 Exercises -- 10. Managing External
Factors -- 10.1 Introduction -- 10.2 Best Practices for Managing
Outsourced Projects -- 10.2.1 Establishing A Software Development
Outsource Process -- 10.2.2 Phase 0: Decision to Outsource -- 10.2.3
Phase 1: Planning -- 10.2.4 Phase 2: Implementation -- 10.2.5 Phase
3: Termination -- 10.3 Best Practices for Facilitating IT Regulatory
Compliance -- 10.3.1 Section 508 of the US Rehabilitation Act --
10.3.2 Sarbanes-Oxley Act of 2002 -- 10.4 Best Practices for
Implementation of CMMI -- 10.4.1 Capability and Maturity Model
Integration (CMMI) -- 10.4.2 Staged Representation -- 10.4.3 Putting
Staged Representation Based Improvement into Practice Using ASDP.
10.4.4 Putting Continuous Representation Based Improvement into
Practice Using ASDP -- 10.5 Acronyms -- 10.6 Glossary -- 10.7
References -- 10.8 Exercises -- 11. Case Studies: Automation as an
Agent of Change -- 11.1 Case Study I: Implementing Java Coding
Standards in a Financial Application -- 11.1.1 Company Profile --
11.1.2 Problems -- 11.1.3 Solution -- 11.1.4 Data Collected -- 11.1.5
The Bottom Line Results - Facilitating Change -- 11.1.6 Acronyms --
11.1.7 Glossary -- 11.1.8 References for Case Study I -- 11.2 Case
Study II: Implementing C/C++ Coding Standards in an Embedded
Application -- 11.2.1 Introduction -- 11.2.2 C/C++ Coding Standards
-- 11.2.3 Considerations on Choosing a Coding Standards Checker --
11.2.4 Experiences Using the Checker -- 11.2.5 Lessons Learned --
11.2.6 Conclusion -- 11.2.7 References for Case Study II -- Appendix
A: A Brief Survey of Modern Software Development Process Models --
A.1 Introduction -- A.2 Rapid Application Development (RAD) and
Rapid Prototyping -- A.3 Incremental Development -- A.4 Spiral Model
-- A.5 Object Oriented Unified Process -- A.6 Extreme and Agile
Programming -- A.7 References -- Appendix B: Mars Polar Lander
(MPL), Loss and Lessons -- B.1 No Definite Root Cause -- B.2 No
Mission Data -- B.3 Root Cause Revisited -- Appendix C: Service-
Oriented Architecture: Example of an Implementation with ADP Best
Practices -- C.1 Introduction -- C.2 Web Service Creation: Initial
Planning and Requirements -- C.2.1 Functional Requirements -- C.2.2
Non-Functional Requirements -- C.3 Web Service Creation: Extended
Planning and Design -- C.3.1 Initial Architecture -- C.3.2 Extended
Infrastructure -- C.3.3 Design -- C.4 Web Service Creation:
Construction and Testing Stage 1 : Module Implementation -- C.4.1
Applying Coding Standards -- C.4.2 Implementing Interfaces and
Applying a Test-first Approach for Modules and Sub-modules -- C.4.3
Generating White Box Junit Tests -- C.4.4 Gradually Implementing the
Sub-module until all Junit Tests Pass and Converge with the Original
Black Box Tests.
C.4.5 Checking Verified Tests into the Source Control System and
Running Nightly Regression Tests -- C.5 Web Service Creation:
Construction and Testing Stage 2: The WSDL Document Implementation
-- C.5.1 Creating and Deploying the WSDL Document on the Staging
Server as Part of the Nightly Build Process -- C.5.2 Avoiding Inline



Sommario/riassunto

Schemas when XML Validation Is Required -- C.5.3 Avoiding Cyclical
Referencing, when Using Inline Schemas -- C.5.4 Verifying WSDL
document for XML Validity -- C.5.5 Avoiding "Encoded" Coding Style by
Checking Interoperability -- C.5.6 Creating Regression Tests for the
WSDL documents and Schemas to Detect Undesired Changes -- C.6
Web Service Creation: Server Deployment -- C.6.1 Deploying the Web
Service to a Staging Server as Part of the Nightly Build Process -- C.6.2
Executing Web Service Tests that Verify the Functionality of the Web
Service -- C.6.3 Creating "Scenario-Based" Tests and Incorporating
them Into the Nightly Test Process -- C.6.4 Database Testing -- C.7
Web Service Creation: Client Deployment -- C.7.1 Implementing the
Client According to the WSDL Document Specification -- C.7.2 Using
Server Stubs to Test Client functionality - Deploying the Server Stub as
Part of the Nightly Deployment Process -- C.7.3 Adding Client Tests
into the Nightly Test Process -- C.8 Web Service Creation: Verifying
Security -- C.8.1 Determining the Desired Level of Security -- C.8.2
Deploying Security Enabled Web Service on Additional Port of the
Staging Server -- C.8.3 Leveraging Existing Tests: Modifying Them to
Test for Security and Incorporating Them into the Nightly Test Process
-- C.9 Web Service Creation: Verifying Performance through
Continuous Performance/Load Testing -- C.9.1 Starting Load Testing
As Early As Possible and Incorporating it into the Nightly Test Process
-- C.9.2 Using Results of Load Tests to Determine Final Deployment.
Configuration -- Appendix D: AJAX Best Practice: Continuous Testing
-- D.1 Why AJAX? -- D.2 AJAX Development and Testing Challenges.
D.3 Continuous Testing -- Appendix E: Software Engineering Tools --
Glossary -- Index.
Improve Productivity by Integrating Automation and Defect Prevention
into Your Software Development ProcessThis book presents an
approach to software management based on a new methodology called
Automated Defect Prevention (ADP). The authors describe how to
establish an infrastructure that functions as a software "production
line" that automates repetitive tasks, organizes project activities, tracks
project status, seamlessly collects project data, and sustains and
facilitates the improvement of human-defined processes. Well-
grounded in software engineering research and in industry best
practices, this book helps organizations gain dramatic improvement in
both product quality and operational effectiveness.Ideal for industry
professionals and project managers, as well as upper-level
undergraduates and graduate-level students in software engineering,
Automated Defect Prevention is complete with figures that illustrate
how to structure projects and contains real-world examples,
developers' testimonies, and tips on how to implement defect
prevention strategies across a project group.



UNINA99110069733033212. Record Nr.

Titolo Microbial corrosion [[electronic resource] ] : proceedings of the 2nd EFC
Workshop, Portugal, 1991 / / edited by C.A.C. Sequeira and A.K. Tiller

Pubbl/distr/stampa London, : Published for the European Federation of Corrosion by The
Institute of Materials, 1992

ISBN 1-907747-19-2
1-60119-170-7

Descrizione fisica 1 online resource (314 p.)

Collana European Federation of Corrosion publications ; ; no. 8
Book ; ; 526

Disciplina 620.11223

Soggetti Microbiologically influenced corrosion

Lingua di pubblicazione Inglese

Formato

Livello bibliografico

Note generali Description based upon print version of record.

Nota di bibliografia

Nota di contenuto

Includes bibliographical references.

Contents; Series Introduction; Preface; CONFERENCE INTRODUCTION;
Metallic Corrosion and Microbes; MECHANISM; Electrical Aspects of the
Metal/Solution Interface; Biofouling and MIC Interactions in the Marine
Environment: An Overview; Electrochemical and Corrosion Behaviour of
Passive and Fouled Metallic Materials in Seawater; From Biology and
Corrosion to Biocorrosion; METALLURGICAL FACTORS; Attachment of
Pseudomonas fluorescens and Desulfovibrio desulfuricans to Mild and
Stainless Steel - First Step in Biofilm Formation
Metallurgical Factors Affecting the Resistance of 300 Series Stainless
Steel to Microbiologically Influenced CorrosionThe Importance of
Metallurgical Factors on Microbial Influenced Corrosion; ANALYTICAL;
Biosensors for Assessing Corrosion in Living Media; Voltammetric
Methods for Characterizing Specific Biological Species in Solution; A
Simple Scanning Electron Microscopy Method for Preliminary
Assessment of the Biocide Treatment on Removal of SRB-Biofilms; Use
of Ion Chromatography in Microbiologically Influenced Corrosion
Studies; EXPERIMENTAL
New Types of Corrosion Caused by Organic MembranesEffects of
Biofilms on Metal Corrosion; Characterization of Metal Biofilm
Interactions by Extended Absorption Fine Structure Spectroscopy;
Simulation and Control of Copper Pipework Corrosion Using a

Materiale a stampa

Monografia



Sommario/riassunto

Laboratory Chemostat Model; CONTROL; Corrosion Control Using
Continuous Residual Chlorine in Water Injection Systems; Biocorrosion
by Sulphate Reducing Bacteria: Growth Inhibition By Aldehydes,
Metronidazole and Organo-Sulphur Derivatives; Interactions Between
Marine Microbiological Fouling and Cathodic Protection Scale; CASE
HISTORIES
The Importance of Environmental Factors in Microbially-Influenced
Corrosion: Part I. Electrode Geometry and Electrolyte FlowThe
Importance of Environmental Factors in Microbially-Influenced
Corrosion: Part 2. Magnetic Field Effects; The Role of Bacteria in the
Graphitic Corrosion of Buried Ductile Cast Iron Pipes; First Results of a
Field Experiment in a County Hospital in Germany Concerning the
Copper Deterioration by Microbially Induced Corrosion; NON-METALLIC
MATERIALS; Microbial Biodeterioration of Stone in Historic-Artistic
Monuments
The Microbial Corrosion of Limestone, Plaster, Metals and Metal-
containing Pigments in Architectural MonumentsA Case Study of the
Corrosion of Stone by Lichens: The Mosaics of the Roman Remains of
Italica; EXPERT SYSTEMS; The ACHILLES Expert System on Corrosion and
Protection: Its use in Microbial Corrosion Consultations
This report covers mechanism, metallurgical factors, analysis,
experimental control, case histories and non-metallic materials; basic
electrochemical concepts; biosensors; voltammetry; microbial corrosion
of stainless steel and copper; new types of microbial corrosion,
including biofilms; microbial biodeterioration of non-metallic material,
notably in an architectural context.



UNINA99109602877033213. Record Nr.

Titolo Semantic externalism / / Jesper Kallestrup

Pubbl/distr/stampa Abingdon, Oxon : , : Routledge, , 2012

ISBN 1-136-81942-8
1-136-81943-6
1-283-43523-3
9786613435231
0-203-83002-4

Descrizione fisica x, 271 p

Collana New problems of philosophy

Classificazione 5,1
CC 4800
CC 5500

Disciplina 121/.68

Soggetti Semantics (Philosophy)
Language and languages - Philosophy
Externalism (Philosophy of mind)
Description (Philosophy)
Reference (Philosophy)

Lingua di pubblicazione Inglese

Formato

Edizione [1st ed.]

Livello bibliografico

Note generali Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Nota di contenuto

Includes bibliographical references and index.

Sommario/riassunto

Descriptivism -- Referentialism -- From language to thought --
Varieties of narrow and wide content -- Self-knowledge -- Scepticism
-- Mental causation.
Semantic externalism is the view that the meanings of referring terms,
and the contents of beliefs that are expressed by those terms, are not
fully determined by factors internal to the speaker but are instead
bound up with the environment. The debate about semantic
externalism is one of the most important but difficult topics in
philosophy of mind and language, and has consequences for our
understanding of the role of social institutions and the physical
environment in constituting language and the mind. In this long-
needed book, Jesper Kallestrup provides an invaluable map of the
problem. Beginning with a thorough introduction to the theories of

Autore Kallestrup Jesper

Materiale a stampa

Monografia



descriptivism and referentialism and the work of Frege and Kripke,
Kallestrup moves on to analyse Putnam's Twin Earth argument, Burge's
arthritis argument and Davidson's Swampman argument. He also
discusses how semantic externalism is at the heart of important topics
such as indexical thoughts, epistemological skepticism, self-
knowledge, and mental causation. Including chapter summaries, a
glossary of terms, and an annotated guide to further reading, Semantic
Externalism an ideal guide for students studying philosophy of
language and philosophy of mind.


