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Improve Productivity by Integrating Automation and Defect Prevention
into Your Software Development ProcessThis book presents an
approach to software management based on a new methodology called
Automated Defect Prevention (ADP). The authors describe how to
establish an infrastructure that functions as a software "production
line" that automates repetitive tasks, organizes project activities, tracks
project status, seamlessly collects project data, and sustains and
facilitates the improvement of human-defined processes. Well-
grounded in software engineering research and in industry best
practices, this book helps organizations gain dramatic improvement in
both product quality and operational effectiveness.Ideal for industry
professionals and project managers, as well as upper-level
undergraduates and graduate-level students in software engineering,
Automated Defect Prevention is complete with figures that illustrate
how to structure projects and contains real-world examples,
developers' testimonies, and tips on how to implement defect
prevention strategies across a project group.
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